MULTIPLICITY RESULTS AND THE M-PAIRS OF TORUS-SPHERE VARIATIONAL LINKS OF THE STRONGLY INDEFINITE FUNCTIONAL

TACKSUN JUNG ${ }^{1}$ AND $\mathrm{Q}-\mathrm{HEUNG} \mathrm{CHOI}^{2 \dagger}$
${ }^{1}$ Department of Mathematics, Kunsan National University, Kunsan 573-701, Korea
E-mail address: ts jung@kunsan.ac.kr
${ }^{2}$ Department of Mathematics, Inha University, Incheon 402-751, Korea
E-mail address: qheung@inha.ac.kr

Abstract

Let $I \in C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies two pairs of Torus-Sphere variational linking inequalities and when I satisfies $m(m \geq 2)$ pairs of Torus-Sphere variational linking inequalities. We show that I has at least four critical points when I satisfies two pairs of Torus-Sphere variational linking inequality with $(P . S .)_{c}^{*}$ condition. Moreover we show that I has at least $2 m$ critical points when I satisfies $m(m \geq 2)$ pairs of Torus-Sphere variational linking inequalities with $(P . S .)_{c}^{*}$ condition. We prove these results by Theorem 2.2 (Theorem 1.1 in [1]) and the critical point theory on the manifold with boundary.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let $I \in C^{1,1}$ be a strongly indefinite functional defined on a Hilbert Space H. In this paper, we investigate the number of the critical points of I when I satisfies $m(m \geq 2)$ pairs of Torus-Sphere variational linking inequalities and $(P . S .)_{c}^{*}$ condition, $m \in N$. We show that I has at least two critical points each when I satisfies each one pair of Torus-Sphere variational linking inequality and $(P . S .)_{c}^{*}$ condition. We prove these results by use of Theorem 2.2 and the critical point theory on the manifold with boundary. In the case that I is not strongly indefinite functional Marino, A., Micheletti, A.M., Pistoia, Schechter, M., Tintarev. K., and Rabinowitz, P., proved in Theorem (3.4) of [4], [7] and [8] a theorem of existence of two solutions when I satisfies one pair of Sphere-Torus variational linking inequality by the mountain pass theorem and degree theory. Marino, A., Micheletti, A. M. and Pistoia, A. proved in Theorem (8.4) of [5] a theorem of existence of three solutions when I satisfies two pairs of Sphere-Torus variational linking inequalities and $(P . S .)_{c}$ condition by the mountain pass theorem and degree theory. In this paper we obtain the following results for the strongly indefinite functional case:

[^0]Theorem 1.1. (Two pairs of Torus-Sphere variational links) Let H be a Hilbert space with a norm $\|\cdot\|$, which is topological direct sum of the four subspaces X_{0}, X_{1}, X_{2} and X_{3}. Let $I \in C^{1,1}(H, R)$ be a strongly indefinite functional. Assume that
(1) $\operatorname{dim} X_{i}<\infty, i=1,2$;
(2) There exist a small number $\rho>0, r^{(1)}>0$ and $R^{(1)}$ such that

$$
\left.r^{(1)}<R^{(1)} \text { and } \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<\inf _{S_{r(1)}} X_{1} \oplus X_{2} \oplus X_{3}\right),
$$

where $S_{1}(\rho)=\left\{u \in X_{1} \mid\|u\|=\rho\right\}$;
(3) There exist a small number $\rho>0, r^{(2)}>0$ and $R^{(2)}>0$ such that

$$
r^{(2)}<R^{(2)} \text { and } \sup _{\Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I<\inf _{S_{r^{(2)}}\left(X_{2} \oplus X_{3}\right)} I
$$

where

$$
S_{r^{(2)}}\left(X_{2} \oplus X_{3}\right)=\left\{u \in X_{2} \oplus X_{3} \mid\|u\|=r^{(2)}\right\}
$$

$\Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)=\left\{u=u_{0}+u_{1}+u_{2} \mid u_{2} \in S_{2}(\rho), u_{0} \in X_{0}, u_{1} \in X_{1},\left\|u_{2}\right\|=\rho\right.$, $\left.1 \leq\left\|u_{0}+u_{1}+u_{2}\right\|=R^{(2)}\right\}$ $\cup\left\{u=u_{0}+u_{1}+u_{2} \mid u_{2} \in S_{2}(\rho), u_{0} \in X_{0}, u_{1} \in X_{1}\right.$, $\left.\left\|u_{2}\right\|=\rho, 1 \leq\left\|u_{0}+u_{1}\right\| \leq R^{(2)}\right\} ;$
(4) $R^{(2)}<R^{(1)} \Rightarrow \Delta_{R}^{(2)}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right) \subset \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)$;
(5) $\beta^{(1)}=\sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<+\infty$, where

$$
\begin{array}{r}
\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)=\left\{u=u_{0}+u_{1} \mid u_{1} \in S_{1}(\rho), u_{0} \in X_{0}\right. \\
\left.\quad\left\|u_{1}\right\|=\rho, 1 \leq\left\|u_{0}+u_{1}\right\| \leq R^{(1)}\right\}
\end{array}
$$

(6) (P.S. $)_{c}^{*}$ condition holds for any $c \in\left[\alpha^{(1)}, \beta^{(1)}\right]$, where

$$
\alpha^{(1)}=\inf _{S_{r}(2)}\left(X_{2} \oplus X_{3}\right),
$$

(7) There exists one critical point e in $X_{0} \oplus X_{3}$ with $I(e)<\alpha^{(1)}$.

Then there exist at least four distinct critical points except e, $u_{j}^{1}, j=1,2$, in X_{1}, u_{j}^{2}, $j=1,2$ in X_{2}, of I with

$$
\begin{aligned}
\alpha^{(1)} & =\inf _{S_{r^{(2)}}\left(X_{2} \oplus X_{3}\right)} I \leq I\left(u_{j}^{2}\right) \leq \sup _{\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I \\
& \leq \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<\inf _{S_{r^{(1)}}\left(X_{1} \oplus X_{2} \oplus X_{3}\right)} I \\
& \leq I\left(u_{j}^{1}\right) \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta^{(1)}<+\infty .
\end{aligned}
$$

Theorem 1.2. (m pairs of Torus-Sphere variational links) Let H be a Hilbert space with a norm $\|\cdot\|$, which is a topological direct sum of the $m+2$ subspaces $X_{0}, X_{1}, \cdots, X_{m}$ and X_{m+1}. Let $I \in C^{1,1}(H, R)$ be a strongly indefinite functional. Assume that
(1) $\operatorname{dim}\left(X_{i}\right)<\infty, i=1, \cdots, m$;
(2) There exist a small number $\rho>0, r^{(k)}>0$ and $R^{(k)}>0$ such that
$k=1, \cdots m$;
(3) $R^{(k)}<R^{(k-1)} \Rightarrow$

$$
\Delta_{R^{(k)}}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right) \subset \Sigma_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots X_{k-2}\right)
$$

$k=1, \cdots, m ;$
(4) $\beta^{(m)}=\sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<+\infty$;
(5) (P.S. $)_{c}^{*}$ condition holds for any $c \in\left[\alpha^{(m)}, \beta^{(m)}\right]$, where

$$
\alpha^{(m)}=\inf _{S_{r}(m)}\left(X_{m} \oplus X_{m+1}\right),
$$

(6) There exists one critical points e in $X_{0} \oplus X_{m+1}$ with $I(e)<\alpha^{(m)}$.

Then there exist at least $2 m$ distinct critical points except $e, u_{j}^{k}, j=1,2$, in $X_{k}, 1 \leq k \leq m$, of I with

$$
\begin{aligned}
& \alpha^{(m)}=\inf _{S_{r(m)}\left(X_{m} \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{m}\right) \leq \sup _{\Delta_{R}(m)\left(S_{m}(\rho), X_{0} \oplus \cdots \oplus X_{m-1}\right)} I \\
& \leq \sup _{\Sigma_{R^{(m-1)}}\left(S_{m-1}(\rho), X_{0} \oplus \cdots \oplus X_{m-2}\right)} I<\inf _{S_{S^{(m-1)}}\left(X_{m-1} \oplus X_{m} \oplus X_{m+1}\right)} I \\
& \leq I\left(u_{j}^{m-1}\right) \leq \sup _{\Delta_{R^{(m-1)}}\left(S_{m-1}(\rho), X_{0} \oplus \cdots \oplus X_{m-2}\right)} I \leq \cdots \leq \sup _{\Sigma_{R^{(k)}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I} I \\
& <\inf _{S_{r^{(k)}}\left(X_{k} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{k}\right) \leq \sup _{\Delta_{R^{(k)}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I} \\
& \leq \sup _{\Sigma_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots \oplus X_{k-2}\right)} I \leq I\left(u_{j}^{k-1}\right) \leq \sup _{\Delta_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots \oplus X_{m-2}\right)} I \\
& \leq \cdots<\inf _{\left.S_{r^{(1)}\left(X_{1} \oplus \cdots{ }^{\prime}\right.} X_{m+1}\right)} I \leq I\left(u_{j}^{1}\right) \leq \sup _{\Delta_{R^{(1)}\left(S_{1}(\rho), X_{0}\right)}} I=\beta^{(m)} .
\end{aligned}
$$

For the proofs of the main results we use Theorem 2.2 and the critical point theory on the manifold with boundary. Since the functional I is strongly indefinite functional, it is convenient to use the notion of the limit relative category instead of the relative category and the (P.S. $)_{c}^{*}$ condition which is a suitable version of the Palais-Smale condition. We restrict the functional I to the manifold C_{k} with boundary, where C_{k} is introduced in section 4 . We study the geometry and topology of the sub-levels of I and \tilde{I}_{k} and investigate the limit relative category of the
sub-level sets of \tilde{I}_{k} and (P.S. $)_{c}^{*}$ condition in C_{k}. By Theorem 2.2 and the the critical point theory on the manifold with boundary, we obtain at least two distinct critical points of \tilde{I}_{k}, in each linked subspace $X_{k}, k=1, \cdots, m$. So we obtain at least two distinct critical points of I, in each linked subspace $X_{k}, k=1, \cdots, m$.

2. CRITICAL POINT THEORY ON THE MANIFOLD WITH BOUNDARY

Now, we consider the critical point theory on the manifold with boundary. Let H be a Hilbert space and M be the closure of an open subset of H such that M can be endowed with the structure of C^{2} manifold with boundary. Let $f: W \rightarrow R$ be a $C^{1,1}$ functional, where W is an open set containing M. For applying the usual topological methods of critical points theory we need a suitable notion of critical point for f on M. Since the functional $I(u)$ is strongly indefinite, the notion of the $(P . S .)_{c}^{*}$ condition and the limit relative category (see [2]) is a useful tool for the proof of the main theorems.
Definition 2.1. If $u \in M$, the lower gradient of f on M at u is defined by
$\operatorname{grad}_{M}^{-} f(u)= \begin{cases}\nabla f(u) & \text { if } u \in \operatorname{int}(M), \\ \nabla f(u)+[<\nabla f(u), \nu(u)>]^{-} \nu(u) & \text { if } u \in \partial M,\end{cases}$
where we denote by $\nu(u)$ the unit normal vector to ∂M at the point u, pointing outwards. We say that u is a lower critical for f on M, if $\operatorname{grad}_{M}^{-} f(u)=0$.

Let $\left(H_{n}\right)_{n}$ be a sequence of closed finite dimensional subspace of H with $\operatorname{dim} H_{n}<+\infty$, $H_{n} \subset H_{n+1}, \cup_{n \in N} H_{n}$ is dense in H.

Let $M_{n}=M \cap H_{n}$, for any n, be the closure of an open subset of H_{n} and has the structure of a C^{2} manifold with boundary in H_{n}. We assume that for any n there exists a retraction $r_{n}: M \rightarrow M_{n}$. For given $B \subset H$, we will write $B_{n}=B \cap H_{n}$.
Definition 2.2. Let $c \in R$. We say that f satisfies the (P.S. $)_{c}^{*}$ condition with respect to $\left(M_{n}\right)_{n}$, on the manifold with boundary M, if for any sequence $\left(k_{n}\right)_{n}$ in N and any sequence $\left(u_{n}\right)_{n}$ in M such that $k_{n} \rightarrow \infty, u_{n} \in M_{k_{n}}, \forall n, f\left(u_{n}\right) \rightarrow c, \operatorname{grad}_{M_{k_{n}}}^{-} f\left(u_{n}\right) \rightarrow 0$, there exists a subsequence of $\left(u_{n}\right)_{n}$ which converges to a point $u \in M$ such that $\operatorname{grad}_{M}^{-} f(u)=0$.

Let Y be a closed subspace of M.
Definition 2.3. Let B be a closed subset of M with $Y \subset B$. We define the relative category $c^{c} t_{M, Y}(B)$ of B in (M,Y), as the least integer h such that there exist $h+1$ closed subsets U_{0}, U_{1}, \ldots, U_{h} with the following properties:
$B \subset U_{0} \cup U_{1} \cup \ldots \cup U_{h} ;$
U_{1}, \ldots, U_{h} are contractible in M;
$Y \subset U_{0}$ and there exists a continuous map $F: U_{0} \times[0,1] \rightarrow M$ such that

$$
\begin{array}{rll}
F(x, 0) & =x & \forall x \in U_{0} \\
F(x, t) \in Y & \forall x \in Y, \forall t \in[0,1] \\
F(x, 1) \in Y & \forall x \in U_{0}
\end{array}
$$

If such an h does not exist, we say that $\operatorname{cat}_{M, Y}(B)=+\infty$.

Definition 2.4. Let (X, Y) be a topological pair and $\left(X_{n}\right)_{n}$ be a sequence of subsets of X. For any subset B of X we define the limit relative category of B in (X, Y), with respect to $\left(X_{n}\right)_{n}$, by

$$
\operatorname{cat}_{(X, Y)}^{*}(B)=\lim \sup _{n \rightarrow \infty} \operatorname{cat}_{\left(X_{n}, Y_{n}\right)}\left(B_{n}\right)
$$

Let Y be a fixed subset of M. We set

$$
\begin{gathered}
\mathcal{B}_{\mathbf{i}}=\left\{\mathbf{B} \subset \mathbf{M} \mid \operatorname{cat}_{(\mathbf{M}, \mathbf{Y})}^{*}(\mathrm{~B}) \geq \mathbf{i}\right\}, \\
c_{i}=\inf _{B \in \mathcal{B}_{\mathbf{i}}} \sup _{x \in B} f(x)
\end{gathered}
$$

We have the following multiplicity theorem, which was proved in [6].
Theorem 2.1. Let $i \in N$ and assume that
(1) $c_{i}<+\infty$,
(2) $\sup _{x \in Y} f(x)<c_{i}$,
(3) the (P.S. $)_{c_{i}}^{*}$ condition with respect to $\left(M_{n}\right)_{n}$ holds.

Then there exists a lower critical point x such that $f(x)=c_{i}$. If

$$
c_{i}=c_{i+1}=\ldots=c_{i+k-1}=c
$$

then

$$
\operatorname{cat}_{M}\left(\left\{x \in M \mid f(x)=c, \operatorname{grad}_{M}^{-} f(x)=0\right\}\right) \geq k
$$

Jung and Choi [1] prove the following theorem which will be used to prove the main results:
Theorem 2.2. (One pair of Torus-Sphere variational link) Let H be a Hilbert space with a norm $\|\cdot\|$, which is topological direct sum of the three subspaces X_{0}, X_{1} and X_{2}. Let $I \in C^{1,1}(H, R)$ be a strongly indefinite functional. Assume that
(1) $\operatorname{dim} X_{1}<+\infty$;
(2) There exist a small number $\rho>0, r>0$ and $R>0$ such that $r<R$ and

$$
\sup _{\Sigma_{R}\left(S_{1}(\rho), X_{0}\right)} I<\inf _{S_{r}\left(X_{1} \oplus X_{2}\right)} I
$$

where

$$
\begin{gathered}
S_{1}(\rho)=\left\{u \in X_{1} \mid\|u\|=\rho\right\} \\
S_{r}\left(X_{1} \oplus X_{2}\right)=\left\{u \in X_{1} \oplus X_{2} \mid\|u\|=r\right\} \\
B_{r}\left(X_{1} \oplus X_{2}\right)=\left\{u \in X_{1} \oplus X_{2} \mid\|u\| \leq r\right\}
\end{gathered}
$$

$$
\Sigma_{R}\left(S_{1}(\rho), X_{0}\right)=\left\{u=u_{1}+u_{2} \mid u_{1} \in S_{1}(\rho), u_{2} \in X_{0},\left\|u_{1}\right\|=\rho\right.
$$

$$
\left.1 \leq\left\|u_{1}+u_{2}\right\|=R\right\} \cup\left\{u=u_{1}+u_{2} \mid u_{1} \in S_{1}(\rho)\right.
$$

$$
\left.\left\|u_{1}\right\|=\rho, 1 \leq\left\|u_{2}\right\| \leq R\right\}
$$

$\Delta_{R}\left(S_{1}(\rho), X_{0}\right)=\left\{u=u_{1}+u_{2} \mid u_{1} \in S_{1}(\rho), u_{2} \in X_{0},\left\|u_{1}\right\|=\rho, 1 \leq\left\|u_{1}+u_{2}\right\| \leq R\right\} ;$
(3) $\beta=\sup _{\Delta_{R}\left(S_{1}(\rho), X_{0}\right)} I<+\infty$;
(4) (P.S. $)_{c}^{*}$ condition holds for any $c \in[\alpha, \beta]$ where

$$
\alpha=\inf _{S_{r}\left(X_{1} \oplus X_{2}\right)} I
$$

(5) There exists one critical point e in $X_{0} \oplus X_{2}$ with $I(e)<\alpha$.

Then there exist at least two distinct critical points except e, $u_{i}, i=1,2$, in X_{1}, of I with

$$
\inf _{S_{r}\left(X_{1} \oplus X_{2}\right)} I \leq I\left(u_{i}\right) \leq \sup _{\Delta_{R}\left(S_{1}(\rho), X_{0}\right)} I
$$

3. PROOF OF THEOREM 1.1

We will apply Theorem 2.2 to the case when H is the topological direct sum of $X_{0} \oplus X_{1}$, X_{2} and X_{3} and to the case when H is the topological direct sum of X_{0}, X_{1} and $X_{2} \oplus X_{3}$. By the conditions (1), (2), (3), (4), we have that

$$
\begin{align*}
\alpha^{(1)} & =\inf _{S_{r^{(2)}}\left(X_{2} \oplus \cdots X_{m+1}\right)} I \leq \sup _{\Delta_{R^{(2)}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I \leq} \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I \\
& <\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)} I \leq \sup _{\Delta_{R^{(1)}\left(S_{1}(\rho), X_{0}\right)} I .} . \tag{3.1}
\end{align*}
$$

The condition (6) implies that I satisfies $(P . S .)_{c}^{*}$ condition for any c with

$$
\begin{equation*}
\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)} I \leq c \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I \tag{3.2}
\end{equation*}
$$

and I also satisfies (P.S. $)_{\gamma}^{*}$ condition for any γ with

$$
\begin{equation*}
\inf _{S_{r}(2)}\left(X_{2} \oplus \cdots \oplus X_{m+1}\right) 1 \leq \gamma \leq \sup _{\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I \tag{3.3}
\end{equation*}
$$

By the condition (5),

$$
\begin{equation*}
\sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta<+\infty . \tag{3.4}
\end{equation*}
$$

Now, we apply Theorem 2.2 to the case when H is the topological direct sum of X_{0}, X_{1} and $X_{2} \oplus X_{3}$. In this case we set the smooth manifold

$$
C^{(1)}=\left\{u \in H \mid\left\|P_{X_{1}} u\right\| \geq 1\right\}
$$

$\psi^{(1)}: H \backslash\left(X_{0} \oplus\left(X_{2} \oplus X_{3}\right)\right) \rightarrow H$ by

$$
\psi^{(1)}(u)=u-\frac{P_{X_{1}} u}{\left\|P_{X_{1}} u\right\|}=P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} u+\left(1-\frac{1}{\left\|P_{X_{1}} u\right\|}\right) P_{X_{1}} u
$$

and $\tilde{I}_{1}=I \cdot \psi^{(1)} \in C_{l o c}^{1,1}\left(C^{(1)}, H\right)$. Then by Theorem 2.2 with the conditions (1), (2), (4), (5), (7) and (3.2), I has at least two critical points $u_{j}^{1}, j=1,2$, in X_{1}, except e, with

$$
\begin{equation*}
\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{1}\right) \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I \tag{3.5}
\end{equation*}
$$

Next we apply Theorem 2.2 once more to the case when H is the topological direct sum of $X_{0} \oplus X_{1}, X_{2}$ and X_{3}. In this case we set the smooth manifold

$$
C^{(2)}=\left\{u \in H \mid\left\|P_{X_{2}} u\right\| \geq 1\right\}
$$

$\psi^{(2)}: H \backslash\left(\left(X_{0} \oplus X_{1}\right) \oplus X_{3}\right) \rightarrow H$ by

$$
\psi^{(2)}(u)=u-\frac{P_{X_{2}} u}{\left\|P_{X_{2}} u\right\|}=P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} u+\left(1-\frac{1}{\left\|P_{X_{2}} u\right\|}\right) P_{X_{2}} u
$$

and $\tilde{I}_{2}=I \cdot \psi^{(2)} \in C_{l o c}^{1,1}\left(C^{(2)}, H\right)$. Then by Theorem 2.2 with the conditions (1), (3), (7), (3.3) and (3.4), I has at least two critical points, $u_{j}^{2}, j=1,2$, in X_{2}, except e, with

$$
\begin{equation*}
\inf _{S_{r^{(2)}}\left(X_{2} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{2}\right) \leq \sup _{\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I \tag{3.6}
\end{equation*}
$$

Using the condition (4), we can combine (3.5) with (3.6). Then we have

$$
\begin{aligned}
\alpha^{(1)} & =\inf _{S_{r^{(2)}}\left(X_{2} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{2}\right) \leq \sup _{\Delta_{R^{(2)}\left(S_{2}(\rho), X_{0} \oplus X_{1}\right)} I \leq} \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I \\
& <\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{1}\right) \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta^{(1)}
\end{aligned}
$$

Thus I has at least four nontrivial distinct critical points except e. So we prove the theorem.

4. PROOF OF THEOREM 1.2

We will apply Theorem $2.2 m$ times to the case when H is the topological direct sum of $X_{0} \oplus X_{1} \oplus \cdots \oplus X_{k-1}, X_{k}, X_{k+1} \oplus \cdots \oplus X_{m+1}$, for each $1 \leq k \leq m$. The conditions (1), (2) and (3) implies that

$$
\begin{align*}
& \alpha^{(m)}=\inf _{S_{r(m)}\left(X_{m} \oplus X_{m+1}\right)} I \leq \sup _{\Delta_{R^{(m)}}\left(S_{m}(\rho), X_{0} \oplus \cdots \oplus X_{m-1}\right)} I \\
& \leq \sup _{\Sigma_{R^{(m-1)}}\left(S_{m-1}(\rho), X_{0} \oplus \cdots \oplus X_{m-2}\right)} I<\quad \cdots \\
& <\inf _{S_{r(k)}\left(X_{k} \oplus \cdots X_{m+1}\right)} I \\
& \leq \sup _{\Delta_{R^{(k)}}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I \leq \sup _{\Sigma_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots \oplus X_{k-2}\right)} I \\
& <\inf _{S_{r^{(k-1)}}\left(X_{k-1} \oplus \cdots \oplus X_{m+1}\right)} I<\quad \cdots \\
& \leq \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)} I \\
& \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta^{(m)} \text {. } \tag{4.1}
\end{align*}
$$

The condition (5) implies that I satisfies $(P . S .)_{c^{(k)}}^{*}$ condition for any $c^{(k)}$ with

$$
\begin{equation*}
\inf _{S_{r^{(k)}}\left(X_{k} \oplus \cdots X_{m+1}\right)} I \leq c^{(k)} \leq \sup _{\Delta_{R^{(k)}}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I, \quad k=1, \cdots, m \tag{4.2}
\end{equation*}
$$

By the condition (4),

$$
\begin{equation*}
\sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta^{(m)}<+\infty \tag{4.3}
\end{equation*}
$$

We apply Theorem 2.2 to the case when H is the topological direct sum of $X_{0} \oplus X_{1} \oplus \cdots \oplus$ $X_{k-1}, X_{k}, X_{k+1} \oplus \cdots \oplus X_{m+1}, k=1, \cdots, m$. In this case we set

$$
C^{(k)}=\left\{u \in H \mid\left\|P_{X_{k}} u\right\| \geq 1\right\}, \quad k=1, \cdots, m
$$

$\psi^{(k)}: H \backslash\left\{\left(X_{0} \oplus X_{1} \oplus \cdots \oplus X_{k-1}\right) \oplus\left(X_{k+1} \oplus \cdots \oplus X_{m+1}\right)\right\} \longrightarrow H$ by $\psi^{(k)}(u)=u-\frac{P_{X_{k}} u}{\left\|P_{X_{k}} u\right\|}=P_{\left(X_{0} \oplus \cdots \oplus X_{k-1}\right)} \oplus\left(X_{k+1} \oplus \cdots \oplus X_{m+1}\right) u+\left(1-\frac{1}{\left\|P_{X_{k}} u\right\|}\right) P_{X_{k}} u$, $k=1, \cdots, m$, and

$$
\tilde{I}_{k}=I \cdot \psi^{(k)} \in C_{l o c}^{1,1}\left(C^{(k)}, H\right), \quad k=1, \cdots, m
$$

Then by Theorem 2.2 with the conditions (1), (2), (3), (5), (6), (4.2) and (4.3), I has at least two critical points $u_{j}^{k}, j=1,2$, in X_{k}, except $e k=1, \cdots, m$ with

$$
\begin{align*}
\inf _{S_{r(k)}\left(X_{k} \oplus \cdots \oplus X_{m+1}\right)} I & \leq I\left(u_{j}^{k}\right) \leq \sup _{\Delta_{R^{(k)}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I} I \\
& \leq \sup _{\Sigma_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots \oplus X_{k-2}\right)} I<\inf _{S_{r^{(k-1)}}\left(X_{k-1} \oplus \cdots \oplus X_{m+1}\right)} I \tag{4.4}
\end{align*}
$$

Using the condition (3), we can combine (4.4) for all $k=1, \cdots, m$. So we have

$$
\begin{aligned}
\alpha^{(m)} & =\inf _{S_{r^{(m)}}\left(X_{m} \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{m}\right) \leq \sup _{\Delta_{R^{(m)}}\left(S_{m}(\rho), X_{0} \oplus \cdots \oplus X_{m-1}\right)} I \\
& \leq \sup _{\Sigma_{R^{(m-1)}}\left(S_{m-1}(\rho), X_{0} \oplus \cdots \oplus X_{m-2}\right)} I<\quad \cdots \\
& <\inf _{S_{r^{(k)}}\left(X_{k} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{k}\right) \\
& \leq \sup _{\Delta_{R^{(k)}}\left(S_{k}(\rho), X_{0} \oplus \cdots \oplus X_{k-1}\right)} I \leq \sum_{\Sigma_{R^{(k-1)}}\left(S_{k-1}(\rho), X_{0} \oplus \cdots \oplus X_{k-2}\right)} I \\
& <\inf \operatorname{Sup}_{r_{r^{(k-1)}}\left(X_{k-1} \oplus \cdots \oplus X_{m+1}\right)} I \leq I\left(u_{j}^{k-1}\right) \leq \\
& \leq \sup _{\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I<\inf _{S_{r^{(1)}}\left(X_{1} \oplus \cdots \oplus X_{m+1)}\right.} I \\
& \leq I\left(u_{j}^{1}\right) \leq \sup _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{0}\right)} I=\beta^{(m) .}
\end{aligned}
$$

Thus I has at least $2 m$ distinct critical points except e. Thus we prove the theorem.

REFERENCES

[1] T. Jung and Q. H. Choi, The number of the critical points of the strongly indefinite functional with one pair of the Torus-Sphere variational linking sublevels, To be appeared in Korean J. Math..
[2] G. Fournier, D. Lupo, M. Ramos, and M. Willem, Limit relative category and ctritical point theory, Dynam. Report, 3(1993), 1-23.
[3] D. Lupo and A. M. Micheletti, Two applications of a three critical points theorem, J. Differential Equations 132 (1996), 222-238.
[4] A. Marino, A. M. Micheletti, and A. Pistoia, Same variational results on semilinear problems with asymptoticallly nonsymmetric behaviour, Nonlinear Analysis "A Tribute in honour of G. Pordi", S.U.S. Pisa (1991).
[5] A. Marino, A. M. Micheletti, and A. Pistoia, A nonsymmetric asymptotically linear elliptic problem, Topol. Meth. Nonlin. Anal., 4 (1994), 289-339.
[6] A. Marino and C. Saccon, Nabla theorems and multiple solutions for some noncooperative elliptic systems, Sezione Di Annalisi Mathematica E Probabilita, Dipartimento di Mathematica, universita di Pisa, 2000.
[7] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S Reg. Conf. Ser. in Math. 6, American Mathematical Society, Providence, R1,(1986).
[8] M. Schechter and K. Tintarev, Pairs of critical points produved by linking subsets with application to semilinear elliptic problems, Bull. Soc. Math. Belg., 44(3) (1992), Ser. B, 249-261.

[^0]: Received by the editors November 10, 2008.
 2000 Mathematics Subject Classification. 35A15.
 Key words and phrases. Strongly indefinite functional, Torus-Sphere variational linking inequality, (P.S. $)_{c}^{*}$ condition, critical point theory, limit relative category.
 ${ }^{\dagger}$ Corresponding author.

