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Minimizing Weighted Mean of Inefficiency
for Robust Designs'

Han Son SeoV

Abstract

This paper addresses issues of robustness in Bayesian optimal design.
We may have difficulty applying Bayesian optimal design principles because
of the uncertainty of prior distribution. When there are several plausible
prior distributions and the efficiency of a design depends on the unknown
prior distribution, robustness with respect to misspecification of prior dis-
tribution is required. We suggest a new optimal design criterion which has
relatively high efficiencies across the class of plausible prior distributions.
The criterion is applied to the problem of estimating the turning point of a
quadratic regression, and both analytic and numerical results are shown to
demonstrate its robustness.
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1. Introduction

Assume that for an independent variable x a response y is measured in accordance
with the statistical model

y=f(a:,9)+e,

where f is an unknown function and the e’'s are uncorrelated real-valued random vari-
ables having mean zero and constant variance. The experimenter is allowed to take N
independent observations on ¥ at x(1,...,%(v). The optimal design problem is : how
should we select the z’s ?

Obviously the optimal design problem depends on the statistical function f. In
addition, even when f is known, it may still depend on the unknown parameter 6. In
fact, when we are interested in estimating a nonlinear combination of coefficients of a
linear model, or, in general, in designing experiments for nonlinear models, the efficiency
of a design depends on the values of the unknown parameters. The Bayesian approach
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uses prior distributions for the unknown parameter in designing optimal experiment. But
in reality there are several plausible prior distributions for a single parameter. In this
situation the robustness of a Bayesian design becomes an important matter. There has
been previous work on robustness of Bayesian optimal design. Dette (1990) suggested
Bayesian optimal designs which are robust to model choice in polynomial regression. Seo
(2002, 2006) deals with robustness aspects by specifying design assumptions in several
prior distributions, one of which is assumed to be more favored than others. DasGupta
and Studden (1991) defined three measures of robustness, (a) minimizing the maximum
inefficiency, (b) minimizing the range of the Bayes risks and, (c) minimizing the diameter
of the set of Bayes estimates. In this paper we propose a new Bayesian optimal design
criterion by minimizing the weighted mean of inefficiency. The measure of likelihood of
a prior distribution is expressed as assigned weight to the prior distribution.

The rest of the article is organized as follows. In Section 2 a general equivalence
theorem is established which gives several alternative criteria for establishing that a
particular design is optimal. Section 3 proposes the new criterion. Section 4 investigate
the robustness of the proposed criterion by applying the criterion to the problem of
estimating the turning point of a quadratic regression. Both analytic and numerical
results are shown. Section 5 includes a summary of results and concluding remarks.

2. General Equivalence Theorem

Let Z be the set of all probability measures on X. We consider convex functions ¢
on E and if we assume X is compact then E is compact in weak convergence topology.
An optimal design is a measure in  which minimizes ¢(n). In this section we present
Whittle’s (1973) general equivalence theorem, which gives several alternative criteria for
optimality. Characterization of optimal designs can be formulated in several ways. For
linear design it is convenient to characterize the optimal design in terms of properties of
the information matrix (Silvey, 1980). For non-linear design, we characterize optimal de-
signs directly in terms of properties of the design measures themselves. In particular, we
use directional derivatives of the criterion with respect to design measures to characterize
the optimal design.

Definition 2.1 For two measures 1 and 12 in Z, the directional derivative at 1, in the
direction of 0y is denoted by F(n1,m2) and is defined, when the limit exists, by

F(m,m) = 1611{]16_1@5((1 —&)m +enz) — d(m)].

The extreme points of = are the measures which put point mass at a single point z
in X. We denote such a measure by 7,. If F(n,n) is linear in 7, then ¢ is said to be
differentiable and

() = / F(m,12)ma(d).
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We use d(n, z) to denote F(n,n,). With this notation, we now give Whittle’s general
equivalence theorem which characterizes optimal designs for this set-up. Whittle (1973)
presented this theorem in the context of linear optimal design. Chaloner and Larntz
(1989) give additional conditions to permit use of the theorem for non-linear designs.
We state the theorem in its extended version that applies to non-linear designs.

Theorem 2.1 (Whittle, 1973). Assume that X is compact, that directional derivatives
exist and are continuous in x, that there is at least one measure in Z for which ¢ s finite,
and that ¢ is such that if n; — 1 in weak convergence then ¢(n;) — o(n).

(a) If ¢ is converx, then a ¢-optimal design ny can be equivalently characterized by any
of the three conditions

(i) no minimizes ¢(n),
(ii) no mazimizes inf, e x d(n, x),
(iii) infyex d(mg,x) = 0.

(b) The point (no, no) is a saddle point of F in that F(no,m) > 0= F(no,m0) > F(n2,10)
for all m,ne € E.

(c) If ¢ is differentiable, then the support of 1o is contained in the set of X for which
d(no, 2} = 0 almost everywhere in 1y measure.

Proof: See Whittle (1973). U

3. Minimum Weighted Mean Of Inefficiency Design

Denote the prior distribution for 8 as A(6) and let ¢(n, A) be a certain function of
interest for the design n evaluated for prior distribution A. The goal of Bayesian design
with the prior distribution A for the parameter 8 is to minimize ¢{n, A) over 7.

Definition 3.1 If there ezist a design n* which minimizes ¢(n, A) among all designs n
then n* is called a B-optimal design (for the prior distribution A).

To assess the relative worth of a design 7 against a B-optimal design for prior distri-
bution A, we use the efficiency of a design defined by DasGupta and Studden (1991).

Definition 3.2 The efficiency of a design n with respect to the prior distribution A is
defined by

EFF(n,A) = ﬁf(”Tf)—)

where n* is a B-optimal design for prior distribution A.



98 Han Son Seo

We assume that there are a finite number of prior distributions for @, denoted as
A;i=1,...,n, but we do not single out one as being more plausible than others.
Under this situation we suggest a design criterion of minimizing the weighted mean of
inefficiency to produce a robust design. Weight &; represents how much the prior A; is
favored to the others.

Definition 3.3 For given § = {61,02,...,0,}, where §; € (0,1) and .1, 6; = 1, n*
is a Bs-optimal design (for the set of prior distributions {A = A1, As,...,An}) if n#
minimizes ®°(n, A), defined by

n 51'
= ; EFF(n, ;) (3.0)

It can be easily verified that the directional derivative for the Bjs-optimal design
criterion is expressed as

7717772 Z (D 77 771#72) (32)

where 7} is B-optimal design for prior distribution A; and F; is the directional derivative
with the prior distribution for 8 being A,.

4. Application: Turning Point Problem

In this section the proposed design criterion (7, A) in (3.1) is applied to the turning
point problem of a quadratic regression. Before we derive an optimal design we need to
fix the criterion ®(n, A) of a B-optimal design in the definition 3.1.

For the specification of function ®(n, A) in Bayesian optimal designs we take usual
squared error loss L(g,g) = (g — g)? as loss function for estimating g(d) with g(¢). Then
the usual criterion ®(n, A) for choosing an optimal design corresponds to the approximate
expected posterior variance of g(#). This criterion is generalized by Chaloner and Larntz
(1989). When several functions of 8, g(d) = (g:1(8),...,gx(8))", are of interest the
criterion is expressed as the expected weighted trace of the product of a symmetric
matrix and the inverse of the information matrix,

5(n) = { Eo(trB(0)M(0,m)~ 1), M(8,n) is nonsingular for all value of 6,

.1
00, M(6,n) is singular for all value of 6, (41)

where B(6) = C(8)C(0)T is a symmetric p by p matrix, C(8) is the p by k matrix with
(7,7) the component dg;(#)/90; and M is the Fisher information matrix,

6.l =~ [ (5% 1os(Plyl6, 2)/06:06;))n(ds).

If we let ®(n, A) = Eg(trB(6)M(6,1n)~!) as in (4.1) the key assumption in Whittle’s
theorem that the criterion function should be convex are easily verified. The design
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criterion ®°(n, A) for Bs-optimal designs is a convex function of  in = and the directional
derivative of ¢* at 7; in the direction of 72, where 1; and 72, are measures in Z, is

F(n1,m2) = ¢*(m) — Be(trB(O)M (0,m1) ™ M (0, m2) M(8,m1) ). (4.2)

F; in (3.2) also becomes
F(m,m2) = ®(m, As) — Eo(trB(O)M(6,m) M (6,m2) M (8,m)™"). (4.3)

The model we consider for the application of the optimal design criterion is the
quadratic model,

Yi = Bo + Bz + Boz? + e,

where 8 = (0o, 51, 52) are unknown coefficients and the errors e; are independent, nor-
mally distributed with mean zero and variance 2. The turning point of the model is
defined as v = —3;/2032, the value of x at which the expected value of y is a maximum or
minimum depending on the sign of 8;. The design region X is restricted to the interval
[—1, 1] without loss of generality. It can be shown that the B-optimal design depends on
Bo, B2 and v only through the first two moments of distribution of 7. Therefore the prior
for v is summarized as the vector, A = (m,v), where m = E(v) and v = V(v).

Theorem 4.1 (Mandal, 1978). For a large sample size, if 02 and B3, are assumed to be
independent of vy then we have the following results.

(a) The design criterion becomes

1 (1 Fv+{3m—c) = (us — popy)}?

d? gy = pgt = o= (kg — pakt)?

o(n,A) =

112
where

x(1) = mamimum value of supporting points of a design 7,

x(n) = mazimum vaelue of supporting points of a design 1),

_ 2:5-1(1) - Z(N) /

=y, = /z’”n(dZ), fr = /(z ~ p1)"n(dz),
L)~
c= TOFTN L T@) — @)
2 2

(b) A B-optimal design for the special case of the prior centered at 0, i.e. A = (0,v) is
7"(=1) = 1"(1) = py'/2 and n*(0) =1 - uy',

where NIQ* = {1+ 20t +4)"/2)1



100 Han Son Seo

For further details on the B-optimal design, see Chaloner (1989) and El-Krunz and
Studden (1991)}.

We now derive B-optimal designs analytically for the turning point problem for a set
of prior distributions having means satisfying a particular condition. This condition is
trivially met if all prior distributions have a common mean at the center of the design
region.

Theorem 4.2 For the turning point problem, consider prior distributions A; = (m;,v;)
forvi>0andm; e Ri=1,...,n. For given § = {41,02,...,8,}, where §; € (0,1)
and Y0 16 =1, if Y0, 4 (H?#(ﬁ(nt*,At)) m; = 0, where n« is B-optimal design
for A, then the §-mizture Bs-optimal design (for the set of prior distributions A =
A, Ao, A, ) is given by

and

where

=) & (H @(n; At)) , L= fjai (H (7, Aj)) (vi +m;).

k=1 t#k i=1 j#1

Proof: We know that ®(n,A;) = [° g(n,0)p;(8)d(8)for some function or g, where
pi(0) is the probability density function of i-th prior distribution.

o (n) = 25
‘ZM,AJ/ 900, 0)p0)d0

=/_O;g(n, ){Z ?p’w))}de
Ht i t’At) (0)
=/_ 9(n,6) {Z ( Hi ,;(nj,A)) }d0
_ > k1% <H?¢kq’(’7fa At)) o0 21 (H?;ﬁi ®(n7, At)) pi(6)
1ot A)) /_oo o) S 0k (T @07, A0) )

dd.
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5 i 51'(1_[?;“' ®(n7,A))pi(8)
i (n) is proportional to f g(n,0) ST (TR T do.
ow

Z?:1 b (H?;éi ®(n;, At)) pi(0)
S 8 (T 20, )
is another p.d.f of 8 with expected value of
> e i (HZ&I ®(n;, At)) m
> k=1 Ok (H?;ék ®(nf, At))

=0

and variance of

iy 6 (s @07, A0 Ea(0) (0 (T @07, ) ) m
i b (T @ 80) \ Sy o (T 207 A0)
S 6 (T (07, A)) Ei(8?)
S o (I @0nt, A0)
Sy 6 (i @07, 80) ) (v + m?)

Sz (Tl 207, A0)

L
M’

where E;(6?) is the second moment of the 3" prior distribution. By applying Theorem 4.1
which gives the B-optimal design for a centered prior distribution, we have the theorem.
d

As noted above, when all prior distributions have their mean at the center of the
design region, the above theorem applies.

Example 4.1 All four prior distributions having their mean at the center of the
design region are considered. Four prior distributions are A; = (0,.03), Az = (0,.07),
Ay =(0,.15), Ay = (0,.90). Given weights Bg-optimal designs are derived by applying
the Theorem 4.1. Table 1 displays efficiencies for Bg-optimal designs for several sets of
weights. To denote relative weights for each prior distribution we use integer numbers.

For example (1234) represents assigning weight 1/10 to A1, 2/10 to Az, 3/10 to A3 and
4/10 to As.

By1234y-optimal design could be considered a robust design compared to the B-
optimal design for A, As and A, but not for Az. We use the term “robust” to mean the
design loses relatively little compared to each B-optimal design, and gains a lot relative
to some. Some sets of weights, for example, B(j;11) and B(y323) give designs that are
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Table 4.1: n(0) (mass assigned to 0) and efficiencies of Bg-optimal designs com-
pared to B-optimal designs based on analytic results for prior distributions
Ay = (0,.03), Az = (0,.07), Az = (0,.15), Ay = (0,.90).

EFFICIENCIES
B-design ) n(0) v1(0.03) 12(0.07) v3(0.15) 14(0.90)
7 (A1) 0.2466000 1 0.9728118 0.9128410 0.7891656
7 (A2) 0.3186651 | 0.9766429 1 0.9830795 0.9052679
n*(As) 0.3797959 | 0.9299636 0.9843830 1 0.9670393
n*(As) 0.4693980 | 0.8338256 0.9164029 0.9687717 1

Bg-design  (1111) | 0.3577687 | 0.9489643 0.9933891 0.9978927  0.9485570
(1234) | 0.3926280 | 0.9179255 0.9775745 0.9993099 0.9758818
(4321) | 0.3213290 | 0.9750357 0.9999675 0.9845667 0.9086486
(4323) | 0.3475527 | 0.9569943 0.9963334 0.9954362 0.9385517
(2223) | 0.3705265 | 0.9382272 0.9885998 0.9996317 0.9597732

robust in the sense that extreme efficiencies are moderated at a small cost of efficiency
for other prior distribution.

When the mean of a prior distribution is not the center of the design region, the
Theorem 4.1 can not be applied. For those cases numerical methods are used to derive
Bs-optimal designs. We can derive directional derivatives of B- and Bj-optimal designs
in the direction of 7, d(n,z) from (3.2), (4.2) and (4.3) and verify that they are fourth
degree polynomials. By the general equivalence Theorem 2.1-(a)-(iii), we know that the
number of supporting points of optimal design is three. Simplex algorithm (Nelder and
Mead, 1965) are used to find the best three points design.

Example 4.2 For simplicity, we only work with two prior distributions. With two
prior distributions, we consider three cases such that

a) Both two prior distribution are certain, i.e., have small variances : A = (—.2,.07)
Ay = (.5,.07).

b) The one prior distribution is certain (small variance) but the other prior distribution
is not (large variance) : Ay = (—.2,.3) Ay = (.5,.07).

c) Neither of two prior distributions is certain : A; = (—.2,.30) Ag = (.5,.30).
Figure 4.1 compares the efficiencies of B- and Bs-optimal designs and indicates that

the Bjs-optimal design criterion yields robust designs for all three cases with various
values of weights.
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Figure 4.1: Efficiencies of Bs-optimal designs compared B-optimal designs based
on numerical results for prior distributions (a) Ay = (—.2,.07) Ag = (.5,.07) (b)
Ay = (—.2,.3) Ay = (.5,.07) (¢) Ay = (—.2,.30) Az = (.5,.30), d = 0.1 stands
for Bs-optimal designs with § = (.1,.9).

5. Discussion

Robustness in the Bayesian optimal designs means maintaining reasonably high ef-
ficiencies for all competing prior distributions. For that purpose a new optimal design
criterion is proposed. When it is applied to the turning point problem in the quadratic
regression analytic results can be derived for centered-mean prior distribution. By cal-
culating directional directive and using the general equivalence theorem the maximum
number of design points and design’s optimality can be verified. Numerical solutions for
design criteria for non centered-mean prior distribution also show similarly good results.
Robustness discussed in this paper can be applied to other optimality criteria. A natural
extension would be applying the idea to the D-optimality.
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