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On the Transforming of Control Space by Manipulator Jacobian

Mohammad Mehdi Fateh and Hasan Farhangfard

Abstract: The transposed Jacobian is proposed to transform the control space from task space to
joint space, in this paper. Instead of inverse Jacobian, the transposed Jacobian is preferred to
avoid singularity problem, short real time calculations and its generality to apply for rectangular
Jacobian. On-line Jacobian identification is proposed to cancel parametric errors produced by D-
H parameters of manipulator. To identify Jacobian, the joint angles and the end-effector position
are measured when tracking a desired trajectory in task space. Stability of control system is
analyzed. The control system is simulated for position control of a two-link manipulator driven
by permanent magnet dc motors. Simulation results are shown to compare the roles of inverse
Jacobian and transposed Jacobian for transforming the control space.
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1. INTRODUCTION

Transforming of control space is necessary since a
robot manipulator is controlled in task space while its
actuators operate in joint space. The operations of
inverse Jacobian and transposed Jacobian in vector
spaces lead to apply them for transforming control
space from task space to joint space. Manipulator
Jacobian is derived from kinematic equations which
transform the vector of generalized joint coordinates
to the vector of generalized position end effector. The
vector of generalized end effector velocities is
transformed to the vector of generalized joint
velocities by inverse Jacobian [1]. However, if
Jacobian matrix is singular or rectangular, the inverse
Jacobian is not obtained. The pseudo-inverse of
Jacobian is an alternative solution for inverting a
rectangular Jacobian [2]. The transposed Jacobian
transforms the vector of generalized end effector
forces to the vector of generalized joint forces.

In practice, industrial robots operate in task space
while they are normally controlled in joint space. The
actual joint positions are compared with the desired
values to determine the errors. The control laws in
position control are then applied to actuators for
compensating the errors. In this manner, the actuators,
the control laws, the desired trajectories and the
outputs operate in joint space. This method is
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common to industrial manipulators. However, the
main goal is to control the end effector in task space.
Therefore, the desired trajectory is transformed from
task space to joint space by inverse kinematic
transformation, in advance. @ However, this
transformation involves problems such as non-
uniqueness, singularity, solving a set of nonlinear
equations, and requiring exact kinematic parameters.
The desired trajectory has planned such that the
determinant of Jacobian matrix to be non zero all over
the operating range as shown in Fig. 7. A control-
observer scheme was proposed for controlling
manipulator in task space [3]. This control approach is
based on measuring joint variables and using forward
kinematic solution instead of using inverse kinematic
solution. The transposed Jacobian technique can be
applied instead of inverse kinematic solution for
generating a trajectory [4]. Moreover, a controller was
designed based on Lyapunov stability using
transposed Jacobian and forward kinematic equations
for tracking a prescribed pass in task space [5].
Although in these approaches the problem of inverse
kinematic has been solved, the forward kinematic
model and manipulator Jacobian can not work
perfectly in the case of parametric errors.

The joint space control method operates well on a
high quality rigid manipulator with precise parameters
in a specific area of workspace. On the other hand, the
research activities have been extended in the control
of robot manipulators on unknown environment with
presence of parametric and unmodeled uncertainties.
Therefore, a joint space control method may not work
in task space perfectly without measuring the end
effector position and direction. At the moment,
measuring variables in task space is not as convenient
as in joint space. The sensing technologies such as
visual [6,7], lazar [8], resistive, inductive, capacitive,
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and ultrasonic [9] technologies may be used for
measuring variables in task space. The use of optical
encoders is common and convenient for measuring
joint variables. In this paper, a compound sensing
strategy is proposed by measuring the required
variables in both task space and joint space for control
purposes.

Inverse Jacobian of manipulator has been
frequently used in control laws for controlling
manipulator in task space [6,10,11]. However, errors
are produced in the control system using a nominal
Jacobian matrix. The nominal values of geometrical
parameters such as link lengths, twists, and off sets
are used to form manipulator Jacobian. However,
manufacturing tolerances may cause the actual
parameters to deviate from the nominal values. An
identification algorithm proposed in [12] can be used
to determine the Jacobian parameters. The
aforementioned algorithm estimates the actual D-H
parameters. The manipulator Jacobian matrix becomes
uncertain in the presence of parametric errors. A task-
space adaptive Jacobian control method was proposed
to overcome the uncertainties adaptively [13]. The
visual information of task space was used as feedback
signal.

Control approaches were proposed in task space for
robot manipulators using estimated Jacobian [14-17].
A PD control law based on approximate Jacobian was
provided for set point control of robots with uncertain
Jacobian matrix. Required conditions for the bound of
the estimated Jacobian matrix and stability conditions
with feedback gains were considered. Despite the fact
that the Jacobian is not known, the asymptotic
stability can be satisfied for the control system [17].

Identification methods have found many
applications in control systems such as parameter
identification, dynamic identification and system
identification. In order to work in the joint control
space, an identified dynamic model of manipulator
can be used. Parameter identification of a manipulator
is proposed to determine the dynamic model [18].
Three sets of special tests are proposed for identifying
coefficients of dynamic equation derived from
Lagrangian formulation [19]. The tests are static,
constant angular velocity motion, and accelerated
motion.

In Section 2, the manipulator Jacobian is
formulated and in Section 3 is identified by the use of
Jacobian formula and sensing required variables. In
Section 4, the inverse Jacobian and transposed
Jacobian for transforming control space from task
space to joint space are analyzed and compared in the
control system. Advantages and drawbacks of the
control approaches are investigated. The control
system stability is then analyzed in Section 5 to
consider stabilization problem and tracking problem.
Finally, the control system is simulated for position

control of the two-link manipulator system and
simulation results are then considered to improve the
system performance.

2. MANIPULATOR JACOBIAN

Manipulator Jacobian or Jacobian matrix is an
important subject for robot control and analysis.
Jacobian matrix is used for planning smooth trajectory,
determining the singular cases, and transforming the
control space. Parametric errors will cause Jacobian
error, and then Jacobian matrix causes velocity error
in the Cartesian space. Jacobian matrix is derived
using forward kinematic equations [20] as follows

T = Fkin(q), (1)

where qeR" is the vector of generalized joint
coordinates, Fkin is the forward kinematic function, T
Ry da’}

is a transformation matrix defined as Toi = [ .

Ry is a rotation matrix to show the direction of the

end-effector and dj is the position of the end-

effector, » is number of end effector frame, and the
base is numbered by 0. Jacobian matrix is defined by

Vo {Jﬂq, @

(1)6’ Jw

where vy and @; are the vector of linear and
angular velocities of the end-effector, respectively,

J, and J, are 3xm matrixes, respectively.
Manipulator Jacobian is introduced to be

J,

JW

For revolute joint i, the i-th column of Jacobian matrix
is given by

3. < l:zi—l x (0, —0;_1 )} @)

1
Zi,

where based on the D-H representation, z;_, is the z
axis of frame i-/, o, is the origin of the frame n, and
0;_; is the origin of frame i-/. For prismatic joint 7,
the i-th column of Jacobian matrix is

_| Zi1
1] 9

In this paper, we consider to track the end-effector
position in the work space, so J, of Jacobian matrix is
simply denoted by J. The kinematic equation for a
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Fig. 1. The two-link manipulator.

two-link manipulator shown in Fig. 1, is formulated as

X] = Ll COS ¢ + L2 COS(ql + qZ),

6

where L =[1, LZ]T is length of links, q=[q; ¢, I

is joint variable vector and X =[.X] X, ]T is position
vector of the end point. Jacobian matrix is derived

g —Lysing — Lysin(q +q,) —Lysin(q; +¢,)
Lycosq, + L, cos(g) +¢5)
, ™
It is shown that the Jacobian matrix is a function of
joint variables and it comprises kinematic parameters.

The end point velocity X is given by

X =Jq. (8)
3. JACOBIAN IDENTIFICATION

The nominal values of geometrical parameters such
as link lengths, twists, and off sets are used to form
manipulator Jacobian. However, manufacturing
tolerances may cause the actual parameters to deviate
from the nominal values. Therefore, we should
identify the actual values of D-H parameters to
determine manipulator Jacobian. The first step to
identify the Jacobian is recognition of the kinematic
parameters and joint variables by considering (7). To
calculate the paraméters, (6) is rewritten as

{Xq:[cos% cos(qg +Q2)}{lﬂ
Xy | [sing sin(qy+a;) || Lr ]
Thus parameters by
-1
L _| s cos(qr +42) | | X, (10)
L2 Sil’l ql '

sin(qy +¢3) | [ X
In this study the manipulator Jacobian includes only
the link length of D-H parameters named L; andL,.

)

Lycos(q) +q,) |

To identify the parameters, it is required to measure
the joint angles and the end point position shown in
(10). The joint angles are measured by optical
encoders and the position of the end effector is
measured by a camera such that task space is defined
as image plane and camera is fixed perpendicular to
the image plane [7]. Calculations of parameters by
(10) are failed in the case of singularity problem.
Equation (10) is singular in where

cOS cos(g, +
de‘{ ' ) ' (¢ QZ):| —0. an
sing, sin(q; +¢;)
This leads to

cosq,sin(g, +¢q,) —sing; cos(q; +¢,)=0.  (12)

Singularity problem will appear in where the
determinant of Jacobian matrix is zero, as well. The
desired trajectory is planed such as the determinant of
Jacobian matrix is not zero, at all. From (7), the
determinant of Jacobian matrix is given by

det(J) = L L, (cos ¢y sin(g; +¢5)
—sing; cos(g; +43))-

(13)

As a result of comparing (12) and (13), we can
conclude that considering det(J)=0 is a sufficient

condition to check the singularity problem in this
control approach.

4. TRANSFORMING OF CONTROL SPACE

Equation (8) leads to
6X=Jdq, (14)
5q=J716X, (15)

where o0q is a difference angle vector in joint space,

and 06X is a difference position vector in task space.
Consequently, the Jacobian matrix transforms the data
from joint space to task space. It is assumed that
0q=qq—q and 6X=X43-X where q4 is the
desired joint vector and X is the desired position

vector. A PID control law is
compensating the error in task space as

proposed for

Kpé+Kpe+ K, jedr:v, (16)

where e =X, — Xis the vector of errors in task space,

v is the control law in task space, Kp, K,,, and K; are
the derivative, the proportional and integrative
coefficient diagonal matrixes, respectively. Giving
appropriate units to coefficient diagonal matrixes Kp,
Kp, and K;, resultsin v as a position vector. The

transformation given by (8) obtains
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v=Ju, (17)
where u is the control law in joint space as a
position vector. Substituting (17) into (16) results
J N Kpe+Kpe+K, jedt) =u (18)
Actually, the inverse Jacobian in (18) transforms
the control law from task space to joint space. The
control inputs of motors are then calculated based on
(18) and motors dynamics. The coefficient matrixes
Kp, Kp, and K are then regulated to improve the

performance of control system. In this control strategy,
the end point position and the joint angles are
measured. The Jacobian matrix is then identified and
the inverse Jacobian is calculated. Fig. 2 shows the
control scheme using inverse Jacobian transformation.
The main problem of the above control strategy is
singularity. When the determinant of Jacobian is zero,
Jacobian matrix becomes singular. The system is not
under the control in the case of singularity and
solution is failed. Although we can choose a non-
singular trajectory, tracking error may take the actual
values in the area close to singularity. In addition, the
inverse Jacobian is not defined for rectangular
Jacobian. We propose transposed Jacobian to
transform the control space. Transposed Jacobian can
transform a force vector in task space to a torque
vector in joint space as follows [20]
t=JTt, (19)
where 7is the vector of generalized torques applied
on the joints, f is the vector of generalized forces
applied on the end effector and J” is the transposed
Jacobian. We prefer J” for avoiding singularity, short
real time calculations and to be applied on rectangular
Jacobian. Using the transformation given by (19)
yields
u=J"v, (20)
where u is the control law in joint space as a torque
vector. In order to satisfy units, we can give
appropriate units to coefficient matrixes in (16) to

provide v as a force vector. Consequently, the
coefficient matrixes in the control law have not the
same units as before. This obtains

I%Dé+lepe+lelj’edt=v, 21)

where K D> K p, and K ; are the derivative, the

proportional and integrative coefficient diagonal
matrixes, respectively. Substituting (21) into (20)
leads to the following control law
JT(Kpé+Kpe+ K, [eds) =u. 22)

The control inputs of motors are then calculated based
on (22) and motors dynamics. The coefficient
matrixes are then regulated to improve the
performance of control system. Fig. 3 shows the
control system using Jacobian transformation (21).

The PID controller is used just as one kind of
position controllers to show the role of Jacobian in the
control system. However, methods based on feedback
linearization methods can be selected to cancel the
nonlinearities in the dynamic model of the robot
which are known as gravitational, centrifugal and
Coriolis  torques. This  requires  parameter
identification to find the dynamic model. As usual, a
gravity model of manipulator is provided by
producers which can be used to cancel the
gravitational torque. By the use of gravity model, a
control law is then written

q
X4 e u >
’ Q‘? » PID " JT Robot >
X y X
Jacobian

Identification

A
X q

Fig. 3. The control system using transposed Jacobian.

q
Xd € -
. qp_ » PID 11 ! Robot >
X A
Jacobian

Identification

A
X

Fig. 2. The control system using inverse Jacobian.

X+ e + u 4
—4»®—»| PID | | Robot [T
) & + >
e T A X
G(Q) (e
Jacobian
Identification
Y S
X q

Fig. 4. The control system.
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JT(Rpe+Rpe+K; [edr)+g(q) =,

where g(q) is the gravitational torque. The proposed
control system is shown in Fig. 4.

5. STABILITY ANALYSIS

We can design a perfect tracking control system if
equilibrium point is asymptotically stable. The
equilibrium point of closed loop control system shown
in Fig. 3 is given by

e=0, and é=0, (23)

AT .
where x=[e ¢] is the state vector. Once system

locates in the equilibrium point, it remains there for
all future time. By some calculations from (21), we
have

Kpé+Kpe+Ke=JTa+J T, S (24)
A Lyapunov function candidate is proposed as
Lrs . 1 75
V(x)= EeTKDe + EeTKIe, (25)

where V(x) is a scalar function with continuous first
order derivatives and is positive definite. V(x)
becomes

Vix)=¢"Kpé+eTK e (26)
From (24) and (26), we have

Vix)=e'(-Kpe—-Ke+J Ty +é6 K e

] . @7
=—e'Kpe+J Tu+J .

The equilibrium point 0 is stable if V(x) is negative
semi-definite. It means that

JTariTu<e"™R pe. (28)
The equilibrium point 0 is asymptotically stable, if
JTa+J Tu<eTKpe. (29)

Dynamic equations of manipulator provide that u
and J T are functions as u= f(q,9,9) and JT (q),

respectively. So, it is required that the desired
trajectory must be bounded and smooth such that

i and JT satisfy (29). Matrix K p should be large
enough, as well. We can choose the diagonal
coefficient matrixes KP, KI and Kl such that local

stability is provided. At equilibrium point, the error e
and its derivative € are zero. As a result of
substituting equilibrium point into (21), u is required

to be zero or a constant vector in equilibrium point.
Equation (28) obtains

JTu<o. (30)

For stabilization problem, vector q is constant at
equilibrium point. Thus JT =0 and (30) will be
satisfied. We can conclude that position error at
stabilization design will be zero. In tracking design,
vector q is not constant. Therefore at the equilibrium
point it is required that

JTa+JTus<o, (31)
%(J‘T u) <O0. (32)

There is no guaranty to satisfy (31). So, tracking error
will not be zero. Therefore, a control method based on
feedback linearization is proposed to reduce the
nonlinearity as shown already in Fig. 4. This results in
an approximate linear system and the desired tracking
error.

6. SIMULATION

The two-link manipulator used in this simulation
has specifications of my is 2kg, m, is lkg, [ is
Im and /, is 5m driven by permanent magnet DC

motors. The components of desired trajectory in task
space, X; and X, are shown in Figs. 5 and 6,

respectively. The desired trajectory has planned such
that the determinant of Jacobian matrix to be non zero
all over the operating range as shown in Fig. 7. The
control approach presented in Fig. 2 is simulated by
choosing,

1000 0O 4000 0 100 0
KP - N K] = N KD = .
0 1000 0 4000 0 100

Tracking error increases to about 0.7 m when starting
but it decreases after 1sec in task space as shown in
Fig. 8. The control system can reduce the error.
However, tracking error is too high when starting. We
try again with other values for coefficient matrixes by
selecting,

2000 0O 10000 O 100 0
KP = 5 KI = ) KD = .
0 2000 0 10000 0 100

Tracking error increases to about 0.01m when starting
and it goes down very soon as shown in Fig. 9.
Tracking error is reduced if comparing Fig. 9. with
Fig. 8. As a result, we can conclude that the system
performance can be improved by selecting suitable
coefficients for the PID controller. Now, the role of
transposed Jacobian is considered in control approach
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presented in Fig. 3. The control system is simulated
by choosing the same coefficients as before

2000 0O 10000 0 100 0
Kp= K, = JKp = )
0 2000 0 10000 0 100

Tracking error in task space is presented in Fig. 10.
It increases to about 0.002m in the first oscillation but
oscillations approaches zero very soon. Since the
determinant of Jacobian as shown in Fig. 7 has the

X1

time, sec

Fig. 5. The desired position of X;.

time, sec

Fig. 6. The desired position of X>.

5

48F

det(J)
M
(&2}

time, sec

Fig. 7. Determinant of manipulator Jacobian.
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lowest value at starting, it is close to singularity. This
causes much more error in calculating inverse
Jacobian. Moreover, because of time constant of
motor response, the errors are relatively high in both
approaches when starting. Tracking error obtained by
transposed Jacobian approach is less than inverse
Jacobian approach in the most of operating range,
particularly in the initial part as compared in Fig. 10.
The tracking error in inverse Jacobian approach is
high close to the singular area. This shows an

e i

08l
0.6+ »// i =
0.4 ‘ |

0.2

position error, m

-0.2

041 4

0.6k K

08 I I . I I . ! I
0

time, sec
Fig. 8. Tracking error.

x10°
10 :

position error, m
E

time, sec

Fig.

9. Tracking error using inverse Jacobian.

10

x10°

Comparing inverse Jacobian and transposed Jacobian

Tracking error, mm

Transpose

=

T T i
! Inverse

time, sec

Fig. 10. A comparison on tracking error.
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advantage of transpose Jacobian which works well in
the singular area. In addition, the time of calculating
the transpose Jacobian is much less than calculating
the inverse Jacobian.

7. CONCLUSIONS

In this paper, the roles of inverse Jacobian and
transposed Jacobian of manipulator have been
investigated and analyzed to transform vectors from
task space to joint space.

We prefer the transposed Jacobian to avoid
singularity, short real time -calculations and its
generality as it can be applied to rectangular Jacobian.
This transformation is very useful and efficient to
control the robot manipulators in task space. The
manipulator Jacobian includes the nominal values of
geometrical parameters such as link lengths, twists,
and offsets. However, manufacturing tolerances may
cause the actual parameters to deviate from the
nominal values. Identification of manipulator Jacobian
was proposed to cancel parametric errors in nominal
Jacobian. Jacobian matrix was identified by sensing
the end effector position using visual technology and
measuring joint angles by optical encoders.

Stability of control system using transposed
Jacobian has been analyzed. It can be concluded that
steady state position error at stabilization design will
be zero. However, tracking error will not be zero.

The control systems of a two-link manipulator
driven by permanent magnet dc motors were
simulated. Simulation results were shown to compare
the roles of transposed Jacobian and inverse Jacobian.
Tracking errors are small enough all over the
operating range using Transpose Jacobian. The
feedback linearization method for compensating the
gravitational torque vector was used for reducing
tracking errors.
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