Improvement of Barrier Property of LDPE Food Packaging Film by Plasma Polymerization

플라스마 중합을 이용한 LDPE 식품포장 필름의 차단성 향상

  • Kim, Kyoung-Seok (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Cho, Dong-Lyun (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University)
  • 김경석 (전남대학교 응용화학공학부, 기능성나노신화학소재사업단, 촉매연구소) ;
  • 조동련 (전남대학교 응용화학공학부, 기능성나노신화학소재사업단, 촉매연구소)
  • Published : 2008.01.31

Abstract

Ultrathin films were coated on low density Polyethylene (LDPE) food packaging films by plasma polymerization of methane, acetylene, hexamethyldisiloxane (HMDSO), and HMDSO+oxygen to improve the barrier property of the LDPE films. The film coated in HMDSO +oxygen (flow rate: 0.6+ 9.0 SCCM) plasma at 40 W for 10 min showed the highest improvement in the barrier property against oxygen, reducing the permeability of oxygen as much as 18.6 times. The film coated in acetylene (flow rate 0.75 SCCM) plasma at 10 W for 10 min showed the highest improvement in the barrier property against carbon dioxide and moisture, reducing the permeability of carbon dioxide and moisture as much as 12.0 and 3.0 times, respectively. In addition, cherry tomato, cucumber, and mushroom (Flammulina velutipes) wrapped with the coated films were kept fresh $1.5{\sim}3.0$ times longer than those wrapped with an LDPE film.

메탄, 아세틸렌, hexamethyldisiloxane(HMDSO) 및 HMDSO+산소를 플라스마 중합시켜 식품포장용으로 사용되고 있는 저밀도 폴리에틸렌(LDPE) 필름의 표면에 얇은 박막을 코팅하여 LDPE 필름의 차단성을 향상시키고자 하였다. 산소에 대한 차단성은 HMDSO+산소(유량 : 0.6+9.0 SCCM) 플라스마로 40 W에서 10분간 코팅할 경우 가장 크게 향상되어 산소 투과도가 18.6배까지 감소되었으며, 이산화탄소와 수분에 대한 차단성은 아세틸렌(유량 : 0.75 SCCM) 플라스마로 10 W에서 10분간 코팅할 경우 가장 크게 향상되어 이산화탄소와 수분 투과도가 각각 12.0배와 3.0배까지 감소되었다. 또한, 이렇게 코팅된 필름을 사용하여 방울토마토, 오이, 팽이버섯 등을 포장할 경우, 신선도 유지기간이 코팅 전에 비하여 $1.5{\sim}3.0$배까지 연장되었다.

Keywords

References

  1. T. Hirata, Proc. The Second International Packaging Conference, Seoul, p 5 (1995)
  2. Young-sun Ha, Package Engineering, 64, 14 (1993)
  3. D. A. P. de Abreu, P. P. Losada, I. Angulo, and J. M. Cruz, Eur. Polym. J., 43, 2229 (2007) https://doi.org/10.1016/j.eurpolymj.2007.01.021
  4. E. Fenyvesi, K. Balogh, K. S. I. Siro, Orgovanyi, J. M. Senyi, K. Otta, and L. Szente, J. Incl. Phenom. Macro., 57, 371 (2007) https://doi.org/10.1007/s10847-006-9256-1
  5. Y. J. Byun, S. I. Hong, K. B. Kim, D. H. Jeon, J. M. Kim, W. S. Whiteside, and H. J. Park, Radiat. Phys. Chem., 76, 974 (2007) https://doi.org/10.1016/j.radphyschem.2006.09.005
  6. M.-L. Zhou, Y.-B. Fu, O. Chen, and Y.-J. Ge, Chinese Phys., 16, 1101 (2007) https://doi.org/10.1088/1009-1963/16/4/040
  7. C. Dury-Brun, V. Jury, V. Guillard, S. Desobry, A. Voilley, and P. Chalier, Food Res. Int., 39, 1002 (2006) https://doi.org/10.1016/j.foodres.2006.07.003
  8. T. Karbowiak, F. Debeaufort, and A. Voilley, Food Hydrocolloid, 21, 878 (2007)
  9. M. H. Jung, J. C. Kim, and J.-H. Chang, Polymer(Korea), 31, 428 (2007)
  10. S. W. Hwang, Y.-C. Chung, B. C. Chun, and S. J. Lee, Polymer(Korea), 28, 374 (2004)
  11. H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985
  12. D. L. Cho, S.-H. Kim, Y. I. Huh, and D. Kim, Macromol. Res., 12, 553 (2004) https://doi.org/10.1007/BF03218443
  13. D. L. Cho, P. M. Claesson, C.-G. Glolander, and K. Johansson, J. Appl. Polym. Sci., 41, 1373 (1990) https://doi.org/10.1002/app.1990.070410702
  14. R. J. Gambogi, D. L. Cho, H. Yasuda, and F. D. Blum, J. Polym. Sci., 29, 1801 (1991) https://doi.org/10.1002/pola.1991.080291212