Optimum Design of Plane Steel Frames Using Second-Order Inelastic Analysis and Section Increment Method

2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계

  • 최세휴 (경북대학교 건축토목공학부)
  • Received : 2008.03.19
  • Accepted : 2008.07.07
  • Published : 2008.09.30

Abstract

In this paper, the optimum design of plane steel frames using second-order inelastic analysis and section increment method is presented. Since the second-order inelastic analysis accounts for geometric and material nonlinearities of the whole system as well as its component members, the design method based on second-order inelastic analysis does not require separate member capacity checks after analysis. A section increment method proposed by this paper is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.

본 연구에서는 2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계 방법을 제시하였다. 2차 비탄성해석은 구조시스템과 그에 속한 부재들의 기하학적 비선형과 재료적 비선형을 고려하기 때문에 2차 비탄성해석에 바탕을 둔 설계법에서는 해석 후 개별부재의 강도검토가 필요 없다. 본 논문에서 제안한 단면점증법을 최적화 기법으로 사용하였으며 목적함수로 구조물의 중량을 사용하였다. 제약조건식은 구조시스템의 하중-저항능력, 처짐 및 층간 수평변위 등을 고려하였으며 제안된 방법에 의한 설계결과를 다른 방법에 의한 것들과 비교하여 그 효율성을 증명하였다.

Keywords

References

  1. 박문호, 김승억, 최세휴, "3차원 강뼈대 구조물의 실용적인 고등해석기법 개발", 대한토목학회 논문집, 대한토목학회, 제20권 1-A호, 2000, pp. 69-76
  2. 윤영묵, 김병헌, "2차 비탄성해석과 유전자 알고리즘을 이용한 평면 강골조 구조물의 최적설계", 대한토목학회 논문집, 대한토목학회, 제24권 1-A호, 2004, pp. 87-100
  3. AISC, "Load and resistance factor design specification", 2nd ed., AISC, Chicago. 1993
  4. Chen, W.F. and Kim, S.E., LRFD, "steel design using advanced analysis", CRC Press, Boca Raton, Florida. 1997
  5. Chen, W.F. and Lui, E.M., "Stability design of steel frames", CRC Press. 1992
  6. Choi, S.H. and Kim, S.E., "Optimal design of steel frame using practical nonlinear inelastic analysis", Engineering Structures, Vol. 24, 9, 2002, pp. 1189-1201
  7. Dumonteil, P. "Simple equations for effective length factors". Engineering Journal, AISC, 29(3), 1992, pp. 111-115
  8. Kim, S.E. and Chen, W.F., "Practical advanced analysis for braced steel frame design", J. Struct. Engrg., ASCE, 122(11), 1996a, pp. 1266-1274 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1266)
  9. Kim, S.E. and Chen, W.F., "Practical advanced analysis for unbraced steel frame design", J. Struct. Engrg., ASCE, 122(11), 1996b, pp. 1259-1265 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1259)
  10. Liew, J.Y. and Tang, L.K., "Nonlinear refined plastic hinge analysis of space frame structures", Research Report No. CE027/98, Department of Civil Engineering, National University of Singapore, Singapore. 1998
  11. Pezeshk, S., Camp, C.V. and Chen, D., "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng., ASCE, 126(3), 2000, pp. 382-388 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
  12. Schinler, D., "Design of partially restrained steel frames using advanced analysis and objected-oriented evolutionary algorithm", MS Thesis, Marquette University, Milwaukee, WI. 2000