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The problem of determining the optimum metal plating thicknesses on the plane and curved surfaces of an 
electronic part is considered. A lower specification limit for the plating thickness is usually pre-specified. In 
most applications, the plating thickness on the curved surface is proportional to that on the plane surface. The 
proportion can be adjusted by adding chemical catalysts to the plating fluid. From the economic point of view, 
nonconforming items with a thickness smaller than the lower specification limit incur rejection costs, such as 
rework and scrap costs, while a thicker plating may incur an excessive material costs. In this article, an economic 
model is proposed for simultaneously determining the target plating thickness and the ratio of the plating 
thickness on the plane surface to that on the curved surface. An illustrative example demonstrates the appli-
cability of the proposed model.
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1. Introduction

Metal plating is the process of coating a material with a met-
allic layer to ensure the proper functioning and protection of 
the material, and its use value is unquestionable in many ap-
plication areas. Recently, metal plating has gained a focused 
attention especially in high-tech manufacturing industries, 
such as semiconductor and other electronic devices, where 
products are usually metal-plated to instill required electronic 
functions into devices. A plating process should provide an 
acceptable plating thickness for every incoming item to attain 
the desired function. Since the plating thickness varies over 
time and with position on the surface, the process is usually 

setup so that the plating thickness may be targeted to a larger 
value than the lower specification limit. However, the differ-
ence between the specification limit and the target value of 
the plating thickness induces unnecessary material costs due 
to over-plating. Determination of a proper target for the plat-
ing thickness is important because the plating metals are usu-
ally quite expensive. 

The problem is very similar to the canning problem or fill-
ing process except for the variation mechanism of quality 
characteristics. Determining the optimum process mean for 
the filling process has been discussed for more than 40 years. 
The previous works for canning problem can be basically 
classified into two categories. The one is mainly focused on 
finding the optimal target mean. See, for example, Bettes 
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Figure 1. Cross-Sectional Diagram of a Multi-Layer PCB (http://www.polarinstruments.com)

(1962), Hunter and Kartha (1977), Bisgaard et al. (1984), 
Golhar (1987), Boucher and Jafari (1991), Elsayed and Chen 
(1993), Tang and Lo (1993), Bai and Lee (1993), Al-Sultan 
(1994), Arcelus and Rahim (1994), Lee and Kim (1994), 
Chen and Chung (1996), Lee and Jang (1997), Hong and 
Elsayed (1999), Hong et al.(1999), Pfeifer (1999), Lee et al. 
(2001), Teeravaraprug and Cho (2002), and Duffuaa and 
Siddiqui (2003). The other deals with simultaneous determi-
nation of the process mean and variance, which includes such 
works as Rahim and Al-Sultan (2000), Rahim and Shaibu 
(2000), Kim et al. (2000), and Rahim et al. (2002) Recently, 
Bowling et al. (2004) developed a model for process target 
levels within the framework of a multi-stage serial produc-
tion process. Lee et al. (2005), Hong et al. (2006) and Lee et 
al. (2006) investigated optimum target parameters for differ-
ent production processes.

In this paper, we consider a situation where target values 
are needed for two quality characteristics in a metal plating 
process; (i) the plating thickness on the plane surface and (ii) 
the plating thickness on the curved surface of an electronic 
part. To the best of our knowledge, there are no previous 
studies applicable to this situation. Both of the two character-
istics should satisfy the same specification limit for a later as-
sembly of the parts into various electronic devices. But the 
plating thickness on curved surfaces is usually different from 
that on plane surfaces. <Figure 1> depicts the schematic dia-
gram of a multi-layer printed circuit board (PCB), where 
metal plating is applied on the curved surface along the thro-
ugh hole as well as the plain surface. The mean plating thick-
ness on plane surfaces may easily be adjusted to a target val-
ue by setting the electric current and processing time without 
incurring significant costs. On the other hand, the thickness 
on the curved surface can be adjusted expensively by adding 
costly chemical catalysts to the plating fluid. Therefore, the 
addition of catalysts to control the plating thickness on the 
curved surface needs to be carefully determined. 

This article proposes an economic model for simultane-
ously determining the optimum values of the mean plating 
thickness on the plane surface and the amount of catalysts to 
control the plating thickness on the curved surface. In fact, 
we determine the ratio of the plating thicknesses on the plane 

and curved surfaces. The ratio is supposed to be proportional 
to the amount of catalysts added to the plating liquid. The 
proposed model incorporates various economic aspects asso-
ciated with metal plating processes, such as manufacturing 
cost, loss due to scraps, and revenue from sale. This paper is 
organized as follows: The profit model is first developed in 
section 2. The properties of the proposed model and solution 
procedures are discussed in section 3. An illustrative numer-
ical example is then provided to demonstrate the proposed 
model. Conclusions are drawn in the last section. 

2. The Profit Model

Consider the production process of an electronic device where 
copper plating is applied to a panel consisting of many parts 
and containing several holes for connecting to various elec-
trical circuits. Let   and   be the dimensions of plating 
thickness on the plain surface and in the hole, respectively. 
An outgoing item is judged conforming if both   and   
are greater than or equal to the lower specification limit  . 
From the past experience, it is known that the dimension of 
plating thickness on the plane surface of the panel is linearly 
proportional to but not the same as that on the curved surface 
in the hole. This may be formally expressed as

     (1)

where      represents the linear coefficient of 
  with respect to  .   and ε are assumed to be in-
dependently normally distributed with ∼    and 
∼ 

 . Then   is also normally distributed with 
mean  and standard deviation  , where   denotes 
the correlation coefficient between   and  . Note that the 
correlation coefficient   is given by 

  
  

  
 .
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For brevity, let      ,      , 
  , and     . It can then be shown that 

∼,                                  (2a)

∼    
 ,                 (2b)

    ∼   
   . (2c)

Note that the lower specification is zero for both   and  , 
and the decision parameters are τ  and  .

Let   be the fixed cost component per item including the 
inspection cost, and let   and   be the unit material cost 
components proportional to   and  , respectively, for met-
al plating. In fact, the unit material cost of   and will be 
the same if the plane surface area is the same as the curved 
surface area. Hence, C/B represents the ratio of the curved 
surface area to the plane surface area. The ratio   of   to   
can be adjusted by changing the viscosity of plating fluid 
with the addition of chemical catalysts. Field studies indicate 
that   is proportional to the quantity of the catalysts in our 
region of interest. These chemical catalysts or additives are 
usually quite expensive, and thus the adjustment requires an 
additional cost of  . Consequently, the manufacturing cost 
related to the metal plating process will be

     (3)

Suppose an income   is attained from the sale of each 
conforming item and a scrap cost   is incurred for each non-
conforming item. Then, the profit function for the metal plat-
ing process is written by 

    ≥   ≥ 
    

(4)

Let  and  be the standard normal distribution and 
density functions, respectively. Denote   ≥   ≥   
by  . Then, the expected profit per item is given by

         (5a) 

where

          

 


∞



 
    , (5b)

      .  (5c)

See Appendix 1 for detailed derivation of (5b). Given  ,  
and the cost parameters, the objective is to find    that 
maximizes the expected profit  .

3.  The Optimal solution

It can easily be shown that maximizing   is equivalent to 
maximizing the transformed expected profit

           (6)

where      ,       and    
 . Let   and   be the first de-
rivatives of   with respect to   and  , respectively, i.e., 
     and     . Then

  
  

  , (7a)

   
  

   . (7b)
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Figure 2. Graphs of 
   and 

 

The functional forms of the first and second derivatives of 
  are given in Appendix 2. Numerical studies over 
the reasonable range of   indicate that    
and    are nonnegative. <Figure 2> depicts the 
graphs of    and    when    
and    . Since both    and     are positive, there 
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may exist a value of   which makes the values of either 
 or   equal to zero. If there exists     
that makes both   and  equal to zero, it is 
necessary to see whether the Hessian matrix evaluated at 
    is negative definite. If not, one may compare the 
values of   evaluated at  , where either  
or   is equal to zero, to obtain the optimum solution.

Suppose that there exists    satisfying      
and     . If the following matrix evaluated at 
  is negative definite, then at least the local maximum is 
guaranteed :






 

 



 


 





      (8)

where         ,  
     and    
 . 

It requires a tedious iterative procedure to obtain the sol-
ution    of Equation (7a) and Equation (7b). The gra-
phs of   and   may help find the numerical 
value of   . These graphs may be prepared in advance 
for typical values of   and . The procedure of finding the 
numerical value of    is as follows :

I) First find values of   that satisfy     .
ii) Next find the values of   that satisfy   
  .

iii) When there exists a value of   at which   
    and     , check if matrix (8) evalua-
ted at this value is negative definite. If this optimality 
condition is satisfied, we have the optimal solution and 
stop. Otherwise, continue to the next step. 

iv) List up the values of   that satisfy either   
   or     , and calculate   for these 
values. Select the value of   which gives the larg-
est  . Denote this value by   .

v) Select four points    ,    ,    
  and     in the neighborhood of   
 . Calculate and compare   for the five points 
including   . Set the value of   with max-
imum   as   .

vi) Repeat the search procedure v) until no improvement in 
  is realized.

4.  Numerical example

In this section, an illustrative numerical example is provided 
to demonstrate the proposed model and perform numerical 

analyses to understand its properties. Consider a process 
where copper plating is performed on a panel that consists of 
several electronic parts. Each part contains holes for later 
connection with various electrical circuits. The plating thick-
ness should be greater than or equal to the lower specifica-
tion limit 12μm for both on the plane surface and on the 
curved surface in the hole to implement desired electrical 
characteristics. Let the plating thickness on the plane surface 
is normally distributed with the standard deviation 4μm. 
Suppose the correlation coefficient between the plating thick-
ness on the plane surface and that on the curved surface is 
   . And we have the revenue of     for each 
conforming part and suffer a loss of     for each 
scrapped part. The unit material cost for the plating process 
is    . The area of the curved surface in the hole is 
one-tenth of the plane surface, i.e.,     and  
   . The cost of chemical catalysts for adjusting the 
ratio   is $2.7. The main objective is to determine the target 
plating thickness on the plane surface and the ratio   so that 
the expected total profit would be maximized.

The problem can be simplified to finding    that ma-
ximizes   with    ,    ,    ,    , 
and    . Finding the optimal solution to the problem in-
volves a great deal of computational resources mainly due to 
the complex nature of evaluating the TEP function. The mod-
el may efficiently be solved using popular mathematical soft-
ware such as MathCAD and Matlab. The maximum expected 
profit of 0.4551 may be obtained at    = (1.9052, 
0.9333) where the first derivatives with respect to   and   
are zero. Further, the Hessian matrix evaluated at   is 
negative semi-definite, which guarantees the maximum over 
the region of interest. The surface plot of TEP is depicted in 
<Figure 3>. 

Figure 3. Surface plot of TEP function

The behavior of TEP function with respect to   evaluated 
at     and that with respect to   at     are shown in 
<Figure 4>. 
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Figure 4. Behavior of   Function

Finally, sensitivity analyses have also been conducted to 
investigate the effects of process parameters on the expected 
total cost. The behavior of TEP with respect to the correla-
tion coefficient   is depicted in <Figure 5>. It is intuitive 
that the expected total profit may increasingly be accrued as 
the correlation between   and   is stronger. On the other 
hand, Figure 6 depicts the behavior of TEP with respect to 
the lower specification limit. The result confirms our expect-
ation that a larger amount of plating material may be required 
as the lower specification limit  becomes greater, and thus 
the expected total profit may decrease. Furthermore, the loca-
tion of optimal solution    has also been observed for 
various values of   and . It is worth noting that the correla-
tion coefficient has an insignificant effect on the location of 
optimal solution. Consequently, the parameters have only af-
fected the expected total profit without having a significant 
impact on the location of optimal solution. 
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  Figure 5. Sensitivity analysis with respect to  
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5.  Conclusion

This article investigates the problem of determining the opti-
mum parameter values of metal plating thickness on the sur-
faces of an electronic part. One of the main concerns asso-
ciated with metal plating processes is to determine the opti-
mum plating thickness on the surfaces. In addition, it is also 
desirable to make the plating thickness uniform over the sur-
face to be plated. Proposed is an economic model for de-
termining the most profitable parameter values for plating 
thickness and uniformity. It is interesting to note that an in-
creased expected profit has been realized for a stronger cor-
relation between dimensions of plating thickness on the plain 
surface and curved surface. Furthermore, it may be noticed, 
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from the expression of correlation coefficient, that the corre-
lation may become stronger by reducing the variations due to 
random errors. Consequently, it is important to focus our at-
tention on how to reduce the variations due to random errors 
to gain a higher profit.

Determining the optimum process target values has long 
been studied in the context of canning or filling problems. 
The problem studied in this paper may also be seen as a var-
iation of canning problems. However, the profit model needs 
to be constructed in a different way for different manufactur-
ing processes so that the specific nature of corresponding 
process may be reflected. For instance, the proposed model 
in this paper incorporates economic impacts of the uni-
formity of plating thickness over the surface to be plated. 
Similarly, economic models to determine the optimum proc-
ess settings need to be further investigated for other manu-
facturing processes by integrating various economic aspects 
unique to the process under study.

Appendix 1.  Derivation of (5b)

Let   and   be standardized random variables of   and 
 , respectively. Then   and   have a standard bivariate 
normal distribution with correlation coefficient  . And
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where ⋅⋅ is the standard bivariate normal dis-
tribution function with correlation coefficient  . Note that 
the standard bivariate normal density function    
can be written as

    

















By changing   and   with appropriate variables and tak-
ing integration of   , it can be shown that
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Appendix 2.  Functional forms of the 
first and second 
derivatives for  
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