DOI QR코드

DOI QR Code

Noninvasive molecular biomarkers for the detection of colorectal cancer

  • Kim, Hye-Jung (Life Sciences Division Korea Institute of Science and Technology) ;
  • Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Kim, Ho-Guen (Department of Pathology, Yonsei University College of Medicine) ;
  • Byun, Jong-Hoe (Department of Molecular Biology, Dankook University) ;
  • Lee, Cheolju (Life Sciences Division Korea Institute of Science and Technology)
  • Published : 2008.10.31

Abstract

Colorectal cancer (CRC) is the third most common malignancy in the world. Because CRC develops slowly from removable precancerous lesions, detection of the disease at an early stage during regular health examinations can reduce both the incidence and mortality of the disease. Although sigmoidoscopy offers significant improvements in the detection rate of CRC, its diagnostic value is limited by its high costs and inconvenience. Therefore, there is a compelling need for the identification of noninvasive biomarkers that can enable earlier detection of CRC. Accordingly, many validation studies have been conducted to evaluate genetic, epigenetic or protein markers that can be detected in the stool or in serum. Currently, the fecal-occult blood test is the most widely used method of screening for CRC. However, advances in genomics and proteomics combined with developments in other relevant fields will lead to the discovery of novel non invasive biomarkers whose usefulness will be tested in larger validation studies. Here, non-invasive molecular biomarkers that are currently used in clinical settings and have the potential for use as CRC biomarkers are discussed.

Keywords

References

  1. Bingham, S. and Riboli, E. (2004) Diet and cancer--the European Prospective Investigation into Cancer and Nutrition. Nat. Rev. Cancer 4, 206-215 https://doi.org/10.1038/nrc1298
  2. Sung, J. J., Lau, J. Y., Goh, K. L., Leung, W. K. and Asia Pacific Working Group on Colorectal Cancer (2005) Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 6, 871-876 https://doi.org/10.1016/S1470-2045(05)70422-8
  3. Hardcastle, J. D., Chamberlain, J. O., Robinson, M. H., Moss, S. M., Amar, S. S., Balfour, T. W., James, P. D. and Mangham, C. M. (1996) Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 348, 1472-1477 https://doi.org/10.1016/S0140-6736(96)03386-7
  4. Kronborg, O., Fenger, C., Olsen, J., Jorgensen, O. D. and Sondergaard, O. (1996) Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet 348, 1467-1471 https://doi.org/10.1016/S0140-6736(96)03430-7
  5. Rubenstein, K. (2007) Disease-related biomarkers: their potential in patient screening, prognosis, and stratification, Insight Pharma Reports, Needham, MA, USA
  6. J. E., Schmitt, M. G., Jr., Wu, W. C. and Hogan, W. J. (1975) Major complications of coloscopy: bleeding and perforation. Am. J. Dig. Dis. 20, 231-235 https://doi.org/10.1007/BF01070726
  7. Winawer, S., Fletcher, R., Rex, D., Bond, J., Burt, R., Ferrucci, J., Ganiats, T., Levin, T., Woolf, S., Johnson, D., Kirk, L., Litin, S. and Simmang, C. (2003) Colorectal cancer screening and surveillance: clinical guidelines and rationale- Update based on new evidence. Gastroenterology 124, 544-560 https://doi.org/10.1053/gast.2003.50044
  8. Booth, R. A. (2007) Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Lett. 249, 87-96 https://doi.org/10.1016/j.canlet.2006.12.021
  9. Duffy, M. J., van Dalen, A., Haglund, C., Hansson, L., Klapdor, R., Lamerz, R., Nilsson, O., Sturgeon, C. and Topolcan, O. (2003) Clinical utility of biochemical markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines. Eur. J. Cancer 39, 718-727 https://doi.org/10.1016/S0959-8049(02)00811-0
  10. Habermann, J. K., Bader, F. G., Franke, C., Zimmermann, K., Gemoll, T., Fritzsche, B., Ried, T., Auer, G., Bruch, H. P. and Roblick, U. J. (2008) From the genome to the proteome- biomarkers in colorectal cancer. Langenbecks Arch. Surg. 393, 93-104 https://doi.org/10.1007/s00423-007-0230-1
  11. Kim, S. Y. and Hahn, W. C. (2007) Cancer genomics: integrating form and function. Carcinogenesis 28, 1387- 1392 https://doi.org/10.1093/carcin/bgm086
  12. Faca, V., Krasnoselsky, A. and Hanash, S. (2007) Innovative proteomic approaches for cancer biomarker discovery. BioTechniques 43, 279, 281-273, 285 https://doi.org/10.2144/000112541
  13. Duffy, M. J., van Dalen, A., Haglund, C., Hansson, L., Holinski-Feder, E., Klapdor, R., Lamerz, R., Peltomaki, P., Sturgeon, C. and Topolcan, O. (2007) Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur. J. Cancer 43, 1348-1360 https://doi.org/10.1016/j.ejca.2007.03.021
  14. Huang, C. S., Lal, S. K. and Farraye, F. A. (2005) Colorectal cancer screening in average risk individuals. Cancer Causes Control 16, 171-188 https://doi.org/10.1007/s10552-004-4027-z
  15. Mandel, J. S., Bond, J. H., Church, T. R., Snover, D. C., Bradley, G. M., Schuman, L. M. and Ederer, F. (1993) Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N. Engl. J. Med. 328, 1365-1371 https://doi.org/10.1056/NEJM199305133281901
  16. Loktionov, A., O'Neill, I. K., Silvester, K. R., Cummings, J. H., Middleton, S. J. and Miller, R. (1998) Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. Clin. Cancer Res. 4, 337-342
  17. Shaw, R. J. and Cantley, L. C. (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 https://doi.org/10.1038/nature04869
  18. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759-767 https://doi.org/10.1016/0092-8674(90)90186-I
  19. Losi, L., Roncucci, L., di Gregorio, C., de Leon, M. P. and Benhattar, J. (1996) K-ras and p53 mutations in human colorectal aberrant crypt foci. J. Pathol. 178, 259-263 https://doi.org/10.1002/(SICI)1096-9896(199603)178:3<259::AID-PATH473>3.0.CO;2-4
  20. Shivapurkar, N., Huang, L., Ruggeri, B., Swalsky, P. A., Bakker, A., Finkelstein, S., Frost, A. and Silverberg, S. (1997) K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett. 115, 39-46 https://doi.org/10.1016/S0304-3835(97)04709-5
  21. Smith, A. J., Stern, H. S., Penner, M., Hay, K., Mitri, A., Bapat, B. V. and Gallinger, S. (1994) Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res. 54, 5527-5530
  22. Mills, A. A. (2005) p53: link to the past, bridge to the future. Genes Dev. 19, 2091-2099 https://doi.org/10.1101/gad.1362905
  23. Iacopetta, B. (2003) TP53 mutation in colorectal cancer. Hum. Mutat. 21, 271-276 https://doi.org/10.1002/humu.10175
  24. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. and Polakis, P. (1998) Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol. 8, 573-581 https://doi.org/10.1016/S0960-9822(98)70226-X
  25. Srivastava, S., Verma, M. and Henson, D. E. (2001) Biomarkers for early detection of colon cancer. Clin. Cancer Res. 7, 1118-1126
  26. Ahlquist, D. A., Skoletsky, J. E., Boynton, K. A., Harrington, J. J., Mahoney, D. W., Pierceall, W. E., Thibodeau, S. N. and Shuber, A. P. (2000) Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119, 1219-1227 https://doi.org/10.1053/gast.2000.19580
  27. Dietmaier, W., Wallinger, S., Bocker, T., Kullmann, F., Fishel, R. and Ruschoff, J. (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 57, 4749-4756
  28. Ribic, C. M., Sargent, D. J., Moore, M. J., Thibodeau, S. N., French, A. J., Goldberg, R. M., Hamilton, S. R., Laurent-Puig, P., Gryfe, R., Shepherd, L. E., Tu, D., Redston, M. and Gallinger, S. (2003) Tumor microsatellite- instability status as a predictor of benefit from fluorouracil- based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247-257 https://doi.org/10.1056/NEJMoa022289
  29. Esteller, M., Levine, R., Baylin, S. B., Ellenson, L. H. and Herman, J. G. (1998) MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 17, 2413- 2417 https://doi.org/10.1038/sj.onc.1202178
  30. Albaugh, G. P., Iyengar, V., Lohani, A., Malayeri, M., Bala, S. and Nair, P. P. (1992) Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int. J. Cancer 52, 347-350 https://doi.org/10.1002/ijc.2910520303
  31. Boynton, K. A., Summerhayes, I. C., Ahlquist, D. A. and Shuber, A. P. (2003) DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin. Chem. 49, 1058-1065 https://doi.org/10.1373/49.7.1058
  32. Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Turnbull, B. A. and Ross, M. E. (2004) Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med. 351, 2704-2714 https://doi.org/10.1056/NEJMoa033403
  33. Bates, J. (2008) Cancer biomarkers: adoption is driving growth, Insight Pharma Reports, Needham, MA, USA
  34. Duffy, M. J. (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin. Chem. 47, 624-630
  35. Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H. and Ginsburg, V. (1982) A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem. 257, 14365-14369
  36. Duffy, M. J. (1998) CA 19-9 as a marker for gastrointestinal cancers: a review. Ann. Clin. Biochem. 35 (Pt 3), 364-370 https://doi.org/10.1177/000456329803500304
  37. Hundt, S., Haug, U. and Brenner, H. (2007) Blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol. Biomarkers Prev. 16, 1935- 1953 https://doi.org/10.1158/1055-9965.EPI-06-0994
  38. Holten-Andersen, M. N., Murphy, G., Nielsen, H. J., Pedersen, A. N., Christensen, I. J., Hoyer-Hansen, G., Brunner, N. and Stephens, R. W. (1999) Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br. J. Cancer 80, 495-503 https://doi.org/10.1038/sj.bjc.6690384
  39. Sorensen, N. M., Schrohl, A. S., Jensen, V., Christensen, I. J., Nielsen, H. J. and Brunner, N. (2008) Comparative studies of tissue inhibitor of metalloproteinases-1 in plasma, serum and tumour tissue extracts from patients with primary colorectal cancer. Scand. J. Gastroenterol. 43, 186-191 https://doi.org/10.1080/00365520701491355
  40. Holten-Andersen, M. N., Fenger, C., Nielsen, H. J., Rasmussen, A. S., Christensen, I. J., Brunner, N. and Kronborg, O. (2004) Plasma TIMP-1 in patients with colorectal adenomas: a prospective study. Eur. J. Cancer 40, 2159-2164 https://doi.org/10.1016/j.ejca.2004.06.011
  41. Holten-Andersen, M., Christensen, I. J., Nilbert, M., Bendahl, P. O., Nielsen, H. J., Brunner, N. and Fernebro, E. (2004) Association between preoperative plasma levels of tissue inhibitor of metalloproteinases 1 and rectal cancer patient survival. a validation study. Eur. J. Cancer 40, 64-72 https://doi.org/10.1016/j.ejca.2003.09.019
  42. Holten-Andersen, M. N., Stephens, R. W., Nielsen, H. J., Murphy, G., Christensen, I. J., Stetler-Stevenson, W. and Brunner, N. (2000) High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin. Cancer Res. 6, 4292-4299
  43. diaDexus Inc. (2007) Clinical application of diaDexus diagnostics in colorectal cancer http://www.diadexus.com/ products/research/oncoogy_diagnostics.php
  44. Roessler, M., Rollinger, W., Palme, S., Hagmann, M. L., Berndt, P., Engel, A. M., Schneidinger, B., Pfeffer, M., Andres, H., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W. and Tacke, M. (2005) Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res. 11, 6550-6557 https://doi.org/10.1158/1078-0432.CCR-05-0983
  45. Roessler, M., Rollinger, W., Mantovani-Endl, L., Hagmann, M. L., Palme, S., Berndt, P., Engel, A. M., Pfeffer, M., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W. and Tacke, M. (2006) Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol. Cell. Proteomics 5, 2092-2101 https://doi.org/10.1074/mcp.M600118-MCP200
  46. Volmer, M. W., Stuhler, K., Zapatka, M., Schoneck, A., Klein-Scory, S., Schmiegel, W., Meyer, H. E. and Schwarte-Waldhoff, I. (2005) Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 5, 2587- 2601 https://doi.org/10.1002/pmic.200401188
  47. Chang, J. W., Kang, U.-B., Kim, D. H., Yi, J. K., Lee, J. W., Noh, D.-Y., Lee, C. and Yu, M.-H. (2008) Identification of circulating endorepellin LG3 fragment: Potential use as a serological biomarker for breast cancer. Proteomics Clin. Appl. 2, 23-32 https://doi.org/10.1002/prca.200780049
  48. Wu, C. C., Chen, H. C., Chen, S. J., Liu, H. P., Hsieh, Y. Y., Yu, C. J., Tang, R., Hsieh, L. L., Yu, J. S. and Chang, Y. S. (2008) Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 8, 316-332 https://doi.org/10.1002/pmic.200700819
  49. Engwegen, J. Y., Gast, M. C., Schellens, J. H. and Beijnen, J. H. (2006) Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol. Sci. 27, 251-259 https://doi.org/10.1016/j.tips.2006.03.003
  50. Ward, D. G., Suggett, N., Cheng, Y., Wei, W., Johnson, H., Billingham, L. J., Ismail, T., Wakelam, M. J., Johnson, P. J. and Martin, A. (2006) Identification of serum biomarkers for colon cancer by proteomic analysis. Br. J. Cancer 94, 1898-1905 https://doi.org/10.1038/sj.bjc.6603188
  51. Habermann, J. K., Roblick, U. J., Luke, B. T., Prieto, D. A., Finlay, W. J., Podust, V. N., Roman, J. M., Oevermann, E., Schiedeck, T., Homann, N., Duchrow, M., Conrads, T. P., Veenstra, T. D., Burt, S. K., Bruch, H. P., Auer, G. and Ried, T. (2006) Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 131, 1020-1029; quiz 1284 https://doi.org/10.1053/j.gastro.2006.07.011
  52. Albrethsen, J., Bogebo, R., Gammeltoft, S., Olsen, J., Winther, B. and Raskov, H. (2005) Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 5, 8 https://doi.org/10.1186/1471-2407-5-8
  53. Melle, C., Ernst, G., Schimmel, B., Bleul, A., Thieme, H., Kaufmann, R., Mothes, H., Settmacher, U., Claussen, U., Halbhuber, K. J. and Von Eggeling, F. (2005) Discovery and identification of alpha-defensins as low abundant, tumor- derived serum markers in colorectal cancer. Gastroenterology 129, 66-73 https://doi.org/10.1053/j.gastro.2005.05.014
  54. Lee, H., Rhee, H., Kang, H. J., Kim, H. S., Min, B. S., Kim, N. K. and Kim, H. (2008) Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas. Am. J. Clin. Pathol. 129, 772- 779 https://doi.org/10.1309/GFCLLRH8A68XKMJN
  55. Mroczko, B., Groblewska, M., Wereszczynska- Siemiatkowska, U., Okulczyk, B., Kedra, B., Laszewicz, W., Dabrowski, A. and Szmitkowski, M. (2007) Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin. Chim. Acta 380, 208-212 https://doi.org/10.1016/j.cca.2007.02.037
  56. Mroczko, B., Groblewska, M., Wereszczynska- Siemiatkowska, U., Kedra, B., Konopko, M. and Szmitkowski, M. (2006) The diagnostic value of G-CSF measurement in the sera of colorectal cancer and adenoma patients. Clin. Chim. Acta 371, 143-147 https://doi.org/10.1016/j.cca.2006.02.037
  57. Soroush, A. R., Zadeh, H. M., Moemeni, M., Shakiba, B. and Elmi, S. (2004) Plasma prolactin in patients with colorectal cancer. BMC Cancer 4, 97 https://doi.org/10.1186/1471-2407-4-97
  58. Schneider, J., Bitterlich, N. and Schulze, G. (2005) Improved sensitivity in the diagnosis of gastro-intestinal tumors by fuzzy logic-based tumor marker profiles including the tumor M2-PK. Anticancer Res. 25, 1507-1515
  59. Zhang, B., Chen, J. Y., Chen, D. D., Wang, G. B. and Shen, P. (2004) Tumor type M2 pyruvate kinase expression in gastric cancer, colorectal cancer and controls. World J. Gastroenterol. 10, 1643-1646 https://doi.org/10.3748/wjg.v10.i11.1643
  60. Zhu, J. and Yao, X. (2007) Use of DNA methylation for cancer detection and molecular classification. J. Biochem. Mol. Biol. 40, 135-141 https://doi.org/10.5483/BMBRep.2007.40.2.135
  61. Lofton-Day, C., Model, F., Devos, T., Tetzner, R., Distler, J., Schuster, M., Song, X., Lesche, R., Liebenberg, V., Ebert, M., Molnar, B., Grutzmann, R., Pilarsky, C. and Sledziewski, A. (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54, 414-423 https://doi.org/10.1373/clinchem.2007.095992
  62. Liew, C. C., Ma, J., Tang, H. C., Zheng, R. and Dempsey, A. A. (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med. 147, 126-132 https://doi.org/10.1016/j.lab.2005.10.005
  63. Han, M., Liew, C. T., Zhang, H. W., Chao, S., Zheng, R., Yip, K. T., Song, Z. Y., Li, H. M., Geng, X. P., Zhu, L. X., Lin, J. J., Marshall, K. W. and Liew, C. C. (2008) Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin. Cancer Res. 14, 455-460 https://doi.org/10.1158/1078-0432.CCR-07-1801
  64. Brunagel, G., Vietmeier, B. N., Bauer, A. J., Schoen, R. E. and Getzenberg, R. H. (2002) Identification of nuclear matrix protein alterations associated with human colon cancer. Cancer Res. 62, 2437-2442
  65. Leman, E. S., Schoen, R. E., Magheli, A., Sokoll, L. J., Chan, D. W. and Getzenberg, R. H. (2008) Evaluation of colon cancer-specific antigen 2 as a potential serum marker for colorectal cancer. Clin. Cancer Res. 14, 1349-1354 https://doi.org/10.1158/1078-0432.CCR-07-4110
  66. Hurst, N. G., Stocken, D. D., Wilson, S., Keh, C., Wakelam, M. J. and Ismail, T. (2007) Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br. J. Cancer 97, 971-977 https://doi.org/10.1038/sj.bjc.6603958
  67. Maurel, J., Nadal, C., Garcia-Albeniz, X., Gallego, R., Carcereny, E., Almendro, V., Marmol, M., Gallardo, E., Maria Auge, J., Longaron, R., Martinez-Fernandez, A., Molina, R., Castells, A. and Gascon, P. (2007) Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int. J. Cancer 121, 1066-1071 https://doi.org/10.1002/ijc.22799
  68. Saito, N. and Kameoka, S. (2005) Serum laminin is an independent prognostic factor in colorectal cancer. Int. J. Colorectal Dis. 20, 238-244 https://doi.org/10.1007/s00384-004-0676-3

Cited by

  1. Differential effects of NOD2 polymorphisms on colorectal cancer risk: a meta-analysis vol.25, pp.2, 2010, https://doi.org/10.1007/s00384-009-0809-9
  2. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis vol.94, 2013, https://doi.org/10.1016/j.jprot.2013.10.020
  3. Early detection of colorectal cancer: from conventional methods to novel biomarkers vol.142, pp.2, 2016, https://doi.org/10.1007/s00432-015-1928-z
  4. DNA Aptamers as Molecular Probes for Colorectal Cancer Study vol.5, pp.12, 2010, https://doi.org/10.1371/journal.pone.0014269
  5. Absolute quantification of DcR3 and GDF15 from human serum by LC-ESI MS vol.19, pp.7, 2015, https://doi.org/10.1111/jcmm.12540
  6. Serum Cellular Apoptosis Susceptibility Protein Is a Potential Prognostic Marker for Metastatic Colorectal Cancer vol.176, pp.4, 2010, https://doi.org/10.2353/ajpath.2010.090467
  7. Identification of a biomarker panel for colorectal cancer diagnosis vol.12, pp.1, 2012, https://doi.org/10.1186/1471-2407-12-43
  8. Carbohydrate antigen 242 highly consists with carbohydrate antigen 19-9 in diagnosis and prognosis of colorectal cancer: study on 185 cases vol.29, pp.2, 2012, https://doi.org/10.1007/s12032-011-9967-z
  9. Aberrant promoter methylation of the vimentin gene may contribute to colorectal carcinogenesis: a meta-analysis vol.35, pp.7, 2014, https://doi.org/10.1007/s13277-014-1905-1
  10. Screening for colorectal cancer: established and emerging modalities vol.8, pp.12, 2011, https://doi.org/10.1038/nrgastro.2011.205
  11. Profiling of differentially expressed proteins in stage IV Colorectal cancers with good and poor outcomes vol.75, pp.10, 2012, https://doi.org/10.1016/j.jprot.2011.12.002
  12. Multiplexed cytokine profiling of serum for detection of colorectal cancer vol.9, pp.7, 2013, https://doi.org/10.2217/fon.13.71
  13. Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis vol.75, pp.2, 2011, https://doi.org/10.1016/j.jprot.2011.07.025
  14. Blood volatile compounds as biomarkers for colorectal cancer vol.15, pp.2, 2014, https://doi.org/10.4161/cbt.26723
  15. Diagnostic Significance of Serum HMGB1 in Colorectal Carcinomas vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0034318
  16. Copper isotope effect in serum of cancer patients. A pilot study vol.7, pp.2, 2015, https://doi.org/10.1039/C4MT00269E
  17. Glycosylation of plasma IgG in colorectal cancer prognosis vol.6, pp.1, 2016, https://doi.org/10.1038/srep28098
  18. Proteomics of colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers vol.73, pp.10, 2010, https://doi.org/10.1016/j.jprot.2010.06.004
  19. SALL4 as a new biomarker for early colorectal cancers vol.141, pp.2, 2015, https://doi.org/10.1007/s00432-014-1808-y
  20. Serum Tests for Colorectal Cancer Screening vol.15, pp.3, 2011, https://doi.org/10.1007/BF03256403
  21. New targets for the immunotherapy of colon cancer—does reactive disease hold the answer? vol.20, pp.3, 2013, https://doi.org/10.1038/cgt.2013.5
  22. Dysplasia-Carcinoma Transition Specific Transcripts in Colonic Biopsy Samples vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0048547
  23. Screening auf kolorektale Neoplasien vol.52, pp.6, 2012, https://doi.org/10.1007/s00117-011-2281-0
  24. Genome-wide association study of endometrial cancer in E2C2 vol.133, pp.2, 2014, https://doi.org/10.1007/s00439-013-1369-1
  25. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer vol.11, pp.5-6, 2017, https://doi.org/10.1002/prca.201600072
  26. CirculatingmiR-34alevels are reduced in colorectal cancer vol.106, pp.8, 2012, https://doi.org/10.1002/jso.23174
  27. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients vol.13, pp.15, 2013, https://doi.org/10.1002/pmic.201200550
  28. Developing Raman spectroscopy as a diagnostic tool for label-free antigen detection 2018, https://doi.org/10.1002/jbio.201700028
  29. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice vol.56, pp.5, 2012, https://doi.org/10.1002/hep.25844
  30. Sporadic Colorectal Cancer Development Shows Rejuvenescence Regarding Epithelial Proliferation and Apoptosis vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0074140
  31. Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis vol.88, pp.19, 2016, https://doi.org/10.1021/acs.analchem.6b02310
  32. Association of single nucleotide polymorphisms in IL-12 and IL-27 genes with colorectal cancer risk vol.45, pp.1-2, 2012, https://doi.org/10.1016/j.clinbiochem.2011.10.004
  33. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics vol.2014, 2014, https://doi.org/10.1155/2014/260348
  34. Noninvasive detection of colorectal cancer by analysis of exhaled breath vol.406, pp.19, 2014, https://doi.org/10.1007/s00216-014-7865-x
  35. The molecular biology of colorectal carcinoma and its implications: A review vol.9, pp.4, 2011, https://doi.org/10.1016/j.surge.2011.01.011
  36. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray vol.128, pp.8, 2011, https://doi.org/10.1002/ijc.25778
  37. Discovery and Validation of New Potential Biomarkers for Early Detection of Colon Cancer vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106748
  38. Clinical Application of Serum Tumor Abnormal Protein (TAP) in Colorectal Cancer Patients vol.16, pp.8, 2015, https://doi.org/10.7314/APJCP.2015.16.8.3425
  39. Loss of E-cadherin expression predicts disease recurrence and shorter survival in colorectal carcinoma vol.120, pp.7, 2012, https://doi.org/10.1111/j.1600-0463.2011.02863.x
  40. Identification of endothelial cell-specific molecule-1 as a potential serum marker for colorectal cancer vol.101, pp.10, 2010, https://doi.org/10.1111/j.1349-7006.2010.01665.x
  41. Candidate Serum Biomarkers for Early Intestinal Cancer Using15N Metabolic Labeling and Quantitative Proteomics in theApcMin/+Mouse vol.12, pp.9, 2013, https://doi.org/10.1021/pr400467c
  42. An Informatics-assisted Label-free Approach for Personalized Tissue Membrane Proteomics: Case Study on Colorectal Cancer vol.10, pp.4, 2011, https://doi.org/10.1074/mcp.M110.003087
  43. Selection of putative colorectal cancer markers by applying PCA on the soluble proteome of tumors: NDK A as a promising candidate vol.74, pp.6, 2011, https://doi.org/10.1016/j.jprot.2011.02.031
  44. Expression profiling of more than 3500 proteins of MSS-type colorectal cancer by stable isotope labeling and mass spectrometry vol.75, pp.10, 2012, https://doi.org/10.1016/j.jprot.2011.11.021
  45. Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0081079
  46. Screening for Colorectal Cancer Is Associated With Lower Disease Stage: A Population-Based Study vol.14, pp.11, 2016, https://doi.org/10.1016/j.cgh.2016.04.008
  47. Proteins in the ERK pathway are affected by arsenic-treated cells vol.4, pp.6, 2015, https://doi.org/10.1039/C4TX00218K
  48. Discovery of genes from feces correlated with colorectal cancer progression vol.12, pp.5, 2016, https://doi.org/10.3892/ol.2016.5069
  49. methylation is a new epigenetic biomarker for colorectal cancer vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5336
  50. BMP3 promoter hypermethylation in plasma-derived cell-free DNA in colorectal cancer patients vol.40, pp.4, 2018, https://doi.org/10.1007/s13258-017-0644-2
  51. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer vol.7, pp.1, 2009, https://doi.org/10.1186/1477-7819-7-36
  52. Advanced Functional Structure-Based Sensing and Imaging Strategies for Cancer Detection: Possibilities, Opportunities, Challenges, and Prospects pp.1616301X, 2019, https://doi.org/10.1002/adfm.201807859