DOI QR코드

DOI QR Code

Replication and encapsidation of recombinant Turnip yellow mosaic virus RNA

  • Shin, Hyun-Il (Division of Life Sciences, Chungbuk National University) ;
  • Kim, In-Cheol (Division of Life Sciences, Chungbuk National University) ;
  • Cho, Tae-Ju (Division of Life Sciences, Chungbuk National University)
  • Published : 2008.10.31

Abstract

Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus that infects mainly Cruciferae plants. In this study, the TYMV genome was modified by inserting an extra subgenomic RNA promoter and a multiple cloning site. This modified TYMV was introduced into Nicotiana benthamiana using a Agrobacterium-mediated T-DNA transfer system (agroinfiltration). When a gene encoding $\beta$-glucuronidase or green fluorescent protein was expressed using this modified TYMV as a vector, replication of the recombinant viruses, especially the virus containing $\beta$-glucuronidase gene, was severely inhibited. The suppression of replication was reduced by co-expression of viral silencing suppressor genes, such as tombusviral p19, closteroviral p21 or potyviral HC-Pro. As expected, two subgenomic RNAs were produced from the recombinant TYMV, where the larger one contained the foreign gene. An RNase protection assay revealed that the recombinant subgenomic RNA was encapsidated as efficiently as the genuine subgenomic RNA.

Keywords

References

  1. Hirth, L. and Givord, L. (1985) Tymoviruses; in The Plant Viruses, Koenig, R. (ed), pp. 163-212, Plenum Press, New York, NY
  2. Matthews, R. E. F. (1980) Turnip yellow mosaic virus. CMI/AAB Description of Plant Viruses, No. 230
  3. Canady, M. A., Larson, S. B., Day, J. and McPherson, A. (1996) Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3, 771-781 https://doi.org/10.1038/nsb0996-771
  4. Dreher, T.W. (2004) Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a C-rich genome. Mol. Plant Pathol. 5, 367-375 https://doi.org/10.1111/j.1364-3703.2004.00236.x
  5. Bozarth, C. S., Weiland, J. J. and Dreher, T. W. (1992) Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187, 124- 130 https://doi.org/10.1016/0042-6822(92)90301-5
  6. Chen, J., Li, W.X., Xie, D., Peng, J.R. and Ding, S.W. (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16, 1302- 1313 https://doi.org/10.1105/tpc.018986
  7. Gleba, Y., Klimyuk, V. and Marillonnet, S. (2007) Viral vectors for the expression of proteins in plants. Current Op. Biotechnol. 18, 134-141 https://doi.org/10.1016/j.copbio.2007.03.002
  8. Smith, M.L., Lindbo, J.A., Dillard-Telm, S,, Brosio, P.M., Lasnik, A.B., McCormick, A.A., Nguyen, L.V. and Palmer, K.E. (2006) Modified Tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 348, 475-488 https://doi.org/10.1016/j.virol.2005.12.039
  9. McCormick, A.A., Corbo, T.A., Wycoff-Clary, S., Palmer, K.E. and Pogue, G.N. (2006) Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjugate Chem. 17, 1330-1338 https://doi.org/10.1021/bc060124m
  10. Smith, M.L., Carbo, T., Bernales, J., Lindbo, J.A., Pogue, G.P., Palmer, K.E. and McCormick, A.A. (2007) Assembly of trans-encapsidated recombinant viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology 358, 321-333 https://doi.org/10.1016/j.virol.2006.08.040
  11. Gargouri, R., Joshi, R. L., Bol, J. F., Astier-Manifacier, S. and Haenni, A. L. (1989) Mechanism of synthesis of turnip yellow mosaic virus coat protein subgenomic RNA in vivo. Virology 171, 386-393 https://doi.org/10.1016/0042-6822(89)90606-5
  12. Cho, T.-J. and Dreher, T.W. (2006) Encapsidation of genomic but not subgenomic Turnip yellow mosaic virus RNAS by coat protein provided in trans. Virology 356, 126-135 https://doi.org/10.1016/j.virol.2006.06.038
  13. Ding, S. W., Howe, J., Keese, P., Mackenzie, A., Meek, D., Osorio-Keese, M., Skotnicki, M., Srifah, P., Torronen, M. and Gibbs, A. (1990) The tymobox, a sequence shared by most tymoviruses: its use in molecular studies of tymoviruses. Nucleic Acids Res. 18, 1181-1187 https://doi.org/10.1093/nar/18.5.1181
  14. Schirawski, J., Voyatzakis, A., Zaccomer, B., Bernardi, F. and Haenni, A. L. (2000) Identification and functional analysis of the turnip yellow mosaic tymovirus subgenomic promoter. J. Virol. 74, 11073-11080 https://doi.org/10.1128/JVI.74.23.11073-11080.2000
  15. Perrotta, A.T., Nikiforova, O. and Bee, M.D. (1999) A conserved bulged adenosine in a peripheral duplex of the antigenomic HDV self-cleaving RNA reduces kinetic trapping of inactive conformations. Nucleic Acids Res. 27, 795-802 https://doi.org/10.1093/nar/27.3.795
  16. Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356-363 https://doi.org/10.1038/nature02874
  17. Voinnet, O. (2005) Induction and suppression of RNA silencing: Insights from viral infections. Nature Rev. Genet. 6, 206-220 https://doi.org/10.1038/nrg1555
  18. Kasschau, K. and Carrington, J.C. (1998) A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 95, 461-470 https://doi.org/10.1016/S0092-8674(00)81614-1
  19. Reed, J.C., Kasschau, K.D., Prokhnevsky, A.I., Gopinath, K., Pogue, G.P., Carrington, J.C. and Dolja, V.V. (2003) Suppressor of RNA silencing encoded by beet yellows virus. Virology 306, 203-209 https://doi.org/10.1016/S0042-6822(02)00051-X
  20. Voinnet, O., Pinto, Y. and Baulcombe, D. (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses. Proc. Natl Acad. Sci. U. S. A. 96, 14147-14152 https://doi.org/10.1073/pnas.96.24.14147
  21. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M. and Burgyan, J. (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070-3080 https://doi.org/10.1093/emboj/cdf312
  22. Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L. and Silhavy, D. (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80, 5747-5756 https://doi.org/10.1128/JVI.01963-05
  23. Dunoyer, P., Lecellier, C.-H., Parizotto, E.A., Himber, C. and Voinnet, O. (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235-1250 https://doi.org/10.1105/tpc.020719
  24. Rao, A.L.N. (2006) Genome packaging by spherical plant RNA viruses. Annu. Rev. Phytopathol. 44, 61-87 https://doi.org/10.1146/annurev.phyto.44.070505.143334
  25. Qu, F. and Morris, T.J. (1997) Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size. J. Virol. 71, 1428-1435
  26. Choi, Y.G. and Rao, A.L. (2003) Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J. Virol. 77, 9750-9757 https://doi.org/10.1128/JVI.77.18.9750-9757.2003
  27. Hellendoorn, K., Verlaan, P.W.G. and Pleij, C.W.A. (1997) A functional role for the conserved protonatable hairpins in the 5' untranslated region of turnip yellow mosaic virus RNA. J. Virol. 71, 8774-8779
  28. Bink, H.H.J., Hellendoorn, K., van der Meulen, J. and Pleij, C.W.A. (2002) Protonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA. Proc. Natl. Acad. Sci. U. S. A. 99, 13465-13470 https://doi.org/10.1073/pnas.202287499
  29. Annamalai, P. and Rao A.L.N. (2007) In vivo packaging of Brome mosaic virus RNA3, but not RNAs 1 and 2, is dependent on a cis-acting 3' tRNA-like structure. J. Virol. 81, 173-181 https://doi.org/10.1128/JVI.01500-06
  30. Wang, X., Carstens, E.B. and Feng, Q. (2006) Characterization of Choristoneura fumiferana genes of the sixth subunit of the origin recognition complex: CfORC6. J. Biochem. Mol. Biol. 39, 782-787 https://doi.org/10.5483/BMBRep.2006.39.6.782

Cited by

  1. Read-through Mutation in the Coat Protein ORF Suppresses Turnip Yellow Mosaic Virus Subgenomic RNA Accumulation vol.43, pp.1, 2013, https://doi.org/10.4167/jbv.2013.43.1.54
  2. The Pro/Hel region is indispensable for packaging non-replicating turnip yellow mosaic virus RNA, but not replicating viral RNA vol.29, pp.5, 2010, https://doi.org/10.1007/s10059-010-0057-4
  3. Genome Size Constraint in Replication and Packaging of Turnip Yellow Mosaic Virus vol.44, pp.2, 2014, https://doi.org/10.4167/jbv.2014.44.2.188
  4. Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly vol.46, pp.10, 2013, https://doi.org/10.5483/BMBRep.2013.46.10.046
  5. Replication and packaging of Turnip yellow mosaic virus RNA containing Flock house virus RNA1 sequence vol.47, pp.6, 2014, https://doi.org/10.5483/BMBRep.2014.47.6.187
  6. Development and Assessment of New RT-qPCR Assay for Detection of HIV-1 Subtypes vol.22, pp.3, 2016, https://doi.org/10.15616/BSL.2016.22.3.83
  7. Replication of Recombinant Flock House Virus RNA Encapsidated by Turnip Yellow Mosaic Virus Coat Proteins in Nicotiana benthamiana vol.47, pp.2, 2017, https://doi.org/10.4167/jbv.2017.47.2.87
  8. A Sequence in Coat Protein Open Reading Frame Is Required for Turnip Yellow Mosaic Virus Replication vol.41, pp.2, 2011, https://doi.org/10.4167/jbv.2011.41.2.109
  9. Development of a Specific Diagnostic System for Detecting Turnip Yellow Mosaic Virus from Chinese Cabbage in Korea vol.56, pp.1, 2016, https://doi.org/10.1007/s12088-015-0557-1
  10. Cysteine-Added Mutants of Turnip Yellow Mosaic Virus vol.48, pp.4, 2018, https://doi.org/10.4167/jbv.2018.48.4.137