References
- Yang, T., Fu, M., Pestell, R. and Sauve, A. A. (2006) SIRT1 and endocrine signaling.Trends Endocrinol. Metab. 17, 186-191 https://doi.org/10.1016/j.tem.2006.04.002
- Frye, R. A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798 https://doi.org/10.1006/bbrc.2000.3000
- Haigis, M. C. and Guarente, L. P. (2006) Mammalian sirtuins-- emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921 https://doi.org/10.1101/gad.1467506
- Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. and Horikawa, I. (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16, 4623-4635 https://doi.org/10.1091/mbc.E05-01-0033
- Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K. and Auwerx, J. (2007) Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann. Med. 39, 335-345 https://doi.org/10.1080/07853890701408194
- Sauve, A. A., Wolberger, C., Schramm, V. L. and Boeke, J. D. (2006) The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435-465 https://doi.org/10.1146/annurev.biochem.74.082803.133500
- North, B. J. and Verdin, E. (2004) Sirtuins: Sir2-related NADdependent protein deacetylases. Genome Biol. 5, 224 https://doi.org/10.1186/gb-2004-5-5-224
- Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93-105 https://doi.org/10.1016/j.molcel.2004.08.031
- Liszt, G., Ford, E., Kurtev, M. and Guarente, L. (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP- ribosyltransferase. J. Biol. Chem. 280, 21313-21320 https://doi.org/10.1074/jbc.M413296200
- Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M. M., Mills, K. D., Patel, P., Hsu, J. T., Hong, A. L., Ford, E., Cheng, H. L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., Auerbach, W., Valenzuela, D., Karow, M., Hottiger, M. O., Hursting, S., Barrett, J. C., Guarente, L., Mulligan, R., Demple, B., Yancopoulos, G. D. and Alt, F. W. (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329 https://doi.org/10.1016/j.cell.2005.11.044
- Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T. L., Barrett, J. C., Chang, H. Y., Bohr, V. A., Ried, T., Gozani, O. and Chua, K. F. (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496 https://doi.org/10.1038/nature06736
- Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I. and Guarente, L. (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes. Dev. 20, 1075-1080 https://doi.org/10.1101/gad.1399706
- Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T. and Bober, E. (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703-710 https://doi.org/10.1161/CIRCRESAHA.107.164558
- North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437-444 https://doi.org/10.1016/S1097-2765(03)00038-8
- Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., Serrano, L., Sternglanz, R., Reinberg, D. and Vaquero, A. (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes. Dev. 20, 1256-1261 https://doi.org/10.1101/gad.1412706
- Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T. and Kazantsev, A. G. (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516-519 https://doi.org/10.1126/science.1143780
- Jing, E., Gesta, S. and Kahn, C. R. (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105-114 https://doi.org/10.1016/j.cmet.2007.07.003
- Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407 https://doi.org/10.1146/annurev.genet.39.110304.095751
- Shi, T., Wang, F., Stieren, E. and Tong, Q. (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560-13567 https://doi.org/10.1074/jbc.M414670200
- Lombard, D. B., Alt ,F. W., Cheng, H. L., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M. D., Bronson, R. T., Haigis, M,. Guarente, L. P., Farese, R. V. Jr., Weissman, S., Verdin, E. and Schwer, B. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807-8814 https://doi.org/10.1128/MCB.01636-07
- Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J. J , Lamming, DW., Souza-Pinto, N. C., Bohr, V. A., Rosenzweig, A., de Cabo, R., Sauve, A. A. and Sinclair, D. A. (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107 https://doi.org/10.1016/j.cell.2007.07.035
- Scher, M. B., Vaquero, A. and Reinberg, D. (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes. Dev. 21, 920-928 https://doi.org/10.1101/gad.1527307
- Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941-954 https://doi.org/10.1016/j.cell.2006.06.057
- Guarente, L. and Picard, F. (2005) Calorie restriction-the SIR2 connection. Cell 120, 473-482 https://doi.org/10.1016/j.cell.2005.01.029
- Lin, S. J., Defossez, P. A. and Guarente, L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128 https://doi.org/10.1126/science.289.5487.2126
- Sinclair, D. A. and Guarente, L. (1997) Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91, 1033-1042 https://doi.org/10.1016/S0092-8674(00)80493-6
- Tissenbaum, H. A. and Guarente, L. (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230 https://doi.org/10.1038/35065638
- Berdichevsky, A., Viswanathan, M., Horvitz, H. R. and Guarente, L. (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165-1177 https://doi.org/10.1016/j.cell.2006.04.036
- Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M. and Sinclair, D. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 https://doi.org/10.1038/nature02789
- Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R. and Sinclair, D. A. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 https://doi.org/10.1126/science.1099196
- Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., Moncada, S. and Carruba, M. O. (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317 https://doi.org/10.1126/science.1117728
- Civitarese, A. E., Carling, S., Heilbronn, L. K., Hulver, M. H., Ukropcova, B., Deutsch, W. A., Smith, S. R. and Ravussin, E. (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76 https://doi.org/10.1371/journal.pmed.0040076
- Bordone, L. and Guarente, L. (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell. Biol. 6, 298-305 https://doi.org/10.1038/nrm1616
- Moynihan, K. A., Grimm, A. A., Plueger, M. M., Bernal- Mizrachi, E., Ford, E., Cras-Meneur, C., Permutt, M.A. and Imai, S. (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2, 105-117 https://doi.org/10.1016/j.cmet.2005.07.001
- Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, E. J., Lin, S. J. and Guarente, L. (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31 https://doi.org/10.1371/journal.pbio.0040031
-
Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M. and Puigserver, P. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1
$\alpha$ and SIRT1. Nature 434, 113-118 https://doi.org/10.1038/nature03354 -
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1
$\alpha$ . Cell 127, 1109-1122 https://doi.org/10.1016/j.cell.2006.11.013 - Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W. and Guarente, L. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776 https://doi.org/10.1038/nature02583
- Pillai, J. B., Isbatan, A., Imai, S., Gupta, M. P. (2005) Poly (ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280, 43121-43130
- Alcendor, R. R., Kirshenbaum, L. A., Imai, S., Vatner, S. F. and Sadoshima, J. (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res. 95, 971-980 https://doi.org/10.1161/01.RES.0000147557.75257.ff
- Araki, T., Sasaki, Y. and Milbrandt, J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010-1013 https://doi.org/10.1126/science.1098014
- Anekonda, T. S and Reddy, P. H. (2006) Neuronal protection by sirtuins in Alzheimer's disease. J. Neurochem. 96, 305-313 https://doi.org/10.1111/j.1471-4159.2005.03492.x
- Tang, B. L. and Chua, C. E. (2008) SIRT1 and neuronal diseases. Mol. Aspects Med. 29, 187-200 https://doi.org/10.1016/j.mam.2007.02.001
- Prozorovski, T., Schulze-Topphoff, U., Glumm, R., Baumgart, J., Schroter, F., Ninnemann, O., Siegert, E., Bendix, I., Brustle, O., Nitsch, R., Zipp, F. and Aktas, O. (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell. Biol. 10, 385-394 https://doi.org/10.1038/ncb1700
- Han, M. K., Song, E. K., Guo, Y., Ou, X., Mantel, C. and Broxmeyer, H. E. (2008) SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2, 241-251 https://doi.org/10.1016/j.stem.2008.01.002
- Chen, D., Steele, A. D., Lindquist, S. and Guarente, L. (2005) Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 https://doi.org/10.1126/science.1118357
- Bordone, L., Cohen, D., Robinson, A., Motta, M. C., van Veen, E., Czopik, A., Steele, A. D., Crowe, H., Marmor, S., Luo, J., Gu, W. and Guarente, L. (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759-767 https://doi.org/10.1111/j.1474-9726.2007.00335.x
- Jones, P. A. and Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428 https://doi.org/10.1038/nrg816
- Pruitt, K., Zinn, R. L., Ohm, J. E., McGarvey, K. M., Kang, S. H., Watkins, D. N., Herman, J. G. and Baylin, S. B. (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40 https://doi.org/10.1371/journal.pgen.0020040
- Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L. and Reinberg, D. (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440-444 https://doi.org/10.1038/nature06268
- Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 https://doi.org/10.1016/S0092-8674(01)00524-4
- Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S.I., Frye, R. A., Pandita, T. K., Guarente, L. and Weinberg, R. A. (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107,149-159 https://doi.org/10.1016/S0092-8674(01)00527-X
- Langley, E., Pearson, M., Faretta, M., Bauer, U. M., Frye, R. A., Minucci, S., Pelicci, P. G. and Kouzarides, T. (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53- induced cellular senescence. EMBO J. 21, 2383- 2396 https://doi.org/10.1093/emboj/21.10.2383
- Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H. L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W. and Greenberg, M. E. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015 https://doi.org/10.1126/science.1094637
- Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. and Guarente, L. (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 https://doi.org/10.1016/S0092-8674(04)00126-6
- Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A. and Mayo, M. W. (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380 https://doi.org/10.1038/sj.emboj.7600244
- Chen, W. Y., Wang, D. W., Yen, R. C., Luo, J., Gu, W. and Baylin, S. B. (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437-448 https://doi.org/10.1016/j.cell.2005.08.011
- Fu, M., Liu, M., Sauve, A. A., Jiao, X., Zhang, X., Powell, M., Yang, T., Gu, W., Avantaggiati, M. L., Pattabiraman, N., Pestell, T. G., Wang, F., Quong, A., Wang, C. and Pestell R. G. (2006) Hormonal control of androgen receptor function through SIRT1. Mol. Cell. Biol. 26, 8122-8135 https://doi.org/10.1128/MCB.00289-06
- Ford, J., Jiang, M. and Milner, J. (2005) Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65, 10457-10463 https://doi.org/10.1158/0008-5472.CAN-05-1923
- Firestein, R., Blander, G., Michan, S., Oberdoerffer, P., Ogino, S., Campbell, J., Bhimavarapu, A., Luikenhuis, S., de Cabo, R., Fuchs, C., Hahn, W. C., Guarente, L. P. and Sinclair, D. A. (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3, e2020 https://doi.org/10.1371/journal.pone.0002020
- Anastasiou, D. and Krek, W. (2006) SIRT1: linking adaptive cellular responses to aging-associated changes in organismal physiology. Physiology (Bethesda) 21, 404-410 https://doi.org/10.1152/physiol.00031.2006
- Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., Sinclair, D. A. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 https://doi.org/10.1038/nature05354
- Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B. Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. and Westphal, C. H. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716 https://doi.org/10.1038/nature06261
- Yang, Y., Fu, W., Chen, J., Olashaw, N., Zhang, X., Nicosia, S. V., Bhalla, K. and Bai, W. (2007) SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat. Cell. Biol. 9, 1253-1262 https://doi.org/10.1038/ncb1645
- Kim, E. J., Kho, J. H., Kang, M. R. and Um, S. J. (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 277-290 https://doi.org/10.1016/j.molcel.2007.08.030
- Westphal, C. H., Dipp, M. A. and Guarente, L. (2007) A therapeutic role for sirtuins in diseases of aging? Trends Biochem. Sci. 32, 555-560 https://doi.org/10.1016/j.tibs.2007.09.008
- Lain, S., Hollick, J. J., Campbell, J., Staples, O. D., Higgins, M., Aoubala, M., McCarthy, A., Appleyard, V., Murray, K. E., Baker, L., Thompson, A., Mathers, J., Holland, S. J., Stark, M. J., Pass, G., Woods, J., Lane, D. P. and Westwood, N. J. (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454-463 https://doi.org/10.1016/j.ccr.2008.03.004
- Brooks, C. L. and Gu, W. (2008) p53 Activation: a case against Sir. Cancer Cell 13, 377-378 https://doi.org/10.1016/j.ccr.2008.04.009
- Kim, J. E., Chen, J and Lou, Z. (2008) DBC1 is a negative regulator of SIRT1. Nature 451, 583-586 https://doi.org/10.1038/nature06500
- Zhao, W., Kruse, J. P., Tang, Y., Jung, S. Y., Qin, J. and Gu, W. (2008) Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587-590 https://doi.org/10.1038/nature06515
Cited by
- Structural Basis for Sirtuin Activity and Inhibition vol.287, pp.51, 2012, https://doi.org/10.1074/jbc.R112.372300
- The Effect of ACP1-ADA1Genetic Interaction on Human Life Span vol.84, pp.6, 2012, https://doi.org/10.3378/027.084.0606
- Expression of SIRT1 in Ocular Surface Squamous Neoplasia vol.31, pp.7, 2012, https://doi.org/10.1097/ICO.0b013e31823f7857
- SirT1 regulates radiosensitivity of hepatoma cells differently under normoxic and hypoxic conditions vol.103, pp.7, 2012, https://doi.org/10.1111/j.1349-7006.2012.02285.x
- Circadian rhythms and chemical carcinogenesis: Potential link. An overview vol.680, pp.1-2, 2009, https://doi.org/10.1016/j.mrgentox.2009.10.006
- RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging vol.6, pp.10, 2015, https://doi.org/10.1038/cddis.2015.218
- NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity vol.41, pp.6, 2013, https://doi.org/10.1016/j.exphem.2013.02.008
- Constitutive heterochromatin formation and transcription in mammals vol.8, pp.1, 2015, https://doi.org/10.1186/1756-8935-8-3
- SIRT1 contributes to telomere maintenance and augments global homologous recombination vol.191, pp.7, 2010, https://doi.org/10.1083/jcb.201005160
- SIRT1 Regulates UV-Induced DNA Repair through Deacetylating XPA vol.39, pp.2, 2010, https://doi.org/10.1016/j.molcel.2010.07.006
- HDAC3 Is Negatively Regulated by the Nuclear Protein DBC1 vol.285, pp.52, 2010, https://doi.org/10.1074/jbc.M110.153270
- Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03635-7
- SIRT1 gene expression upon genotoxic damage is regulated by APE1 through nCaRE-promoter elements vol.25, pp.4, 2014, https://doi.org/10.1091/mbc.E13-05-0286
- Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1 vol.33, pp.1, 2012, https://doi.org/10.1038/aps.2011.143
- HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress vol.15, pp.16, 2016, https://doi.org/10.1080/15384101.2016.1196302
- SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation vol.772, 2015, https://doi.org/10.1016/j.mrfmmm.2014.12.010
- Antiaging, longevity and calorie restriction vol.13, pp.1, 2010, https://doi.org/10.1097/MCO.0b013e3283331384
- Identification and characterization of novel sirtuin inhibitor scaffolds vol.17, pp.19, 2009, https://doi.org/10.1016/j.bmc.2009.07.073
- Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium vol.219, pp.1, 2017, https://doi.org/10.1111/apha.12644
- AROS Is a Significant Biomarker for Tumor Aggressiveness in Non-cirrhotic Hepatocellular Carcinoma vol.30, pp.9, 2015, https://doi.org/10.3346/jkms.2015.30.9.1253
- Healthy clocks, healthy body, healthy mind vol.20, pp.1, 2010, https://doi.org/10.1016/j.tcb.2009.10.005
- Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast 2015, https://doi.org/10.1093/nar/gkv842
- The protective effects of Resveratrol against radiation-induced intestinal injury vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1915-9
- When less is more: the PI3K pathway as a determinant of tumor response to dietary restriction vol.19, pp.7, 2009, https://doi.org/10.1038/cr.2009.81
- Structural basis for sirtuin function: What we know and what we don't vol.1804, pp.8, 2010, https://doi.org/10.1016/j.bbapap.2009.09.009
- Zebrafish as a Model Organism to Evaluate Drugs Potentially Able to Modulate Sirtuin Expression vol.8, pp.1, 2011, https://doi.org/10.1089/zeb.2010.0677
- Sirtuins inhibitors: The approach to affinity and selectivity vol.1804, pp.8, 2010, https://doi.org/10.1016/j.bbapap.2009.11.010
- SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis vol.31, pp.43, 2012, https://doi.org/10.1038/onc.2011.612
- Impact of Maternal Diet on the Epigenome during In Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood vol.7, pp.12, 2015, https://doi.org/10.3390/nu7115467
- CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1 vol.335, pp.2, 2013, https://doi.org/10.1016/j.canlet.2013.02.051
- The time-dependent autophagy protects against apoptosis with possible involvement of Sirt1 protein in multiple myeloma under nutrient depletion vol.91, pp.3, 2012, https://doi.org/10.1007/s00277-011-1315-z
- Expression of silent mating type information regulator 2 homolog 1 and its role in human intervertebral disc cell homeostasis vol.13, pp.6, 2011, https://doi.org/10.1186/ar3533
- Resveratrol delays Wallerian degeneration in a NAD+ and DBC1 dependent manner vol.251, 2014, https://doi.org/10.1016/j.expneurol.2013.11.013
- NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells vol.418, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.01.109
- Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats vol.11, pp.6, 2010, https://doi.org/10.1007/s10522-010-9279-2
- Mechanisms Underlying Tumor Suppressive Properties of Melatonin vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082205