DOI QR코드

DOI QR Code

ESCRT, autophagy, and frontotemporal dementia

  • Lee, Jin-A (Gladstone Institute of Neurological Disease and Department of Neurology, University of California) ;
  • Gao, Fen-Biao (Gladstone Institute of Neurological Disease and Department of Neurology, University of California)
  • Published : 2008.12.31

Abstract

Many age-dependent neurodegenerative diseases are associated with the accumulation of abnormally folded proteins within neurons. One of the major proteolytic pathways in the cell is the autophagy pathway, which targets cytoplasmic contents and organelles to the lysosomes for bulk degradation under various physiological and stressful conditions. Although the importance of autophagy in cellular physiology is well appreciated, its precise roles in neurodegeneration remain largely unclear. Recent studies indicate that components of the endosomal sorting complex required for transport (ESCRT) are important in the autophagy pathway. Reduced activity of some ESCRT subunits leads to the accumulation of autophagosomes and failure to clear intracellular protein aggregates. Interestingly, rare mutations in CHMP2B, an ESCRT-III subunit, are associated with frontotemporal dementia linked to chromosome 3 (FTD3). Mutant CHMP2B proteins seem to disrupt the fusion of autophagosomes and lysosomes in cell culture models. These findings suggest a potential mechanism for the pathogenesis of FTD3 and possibly other neurodegenerative diseases as well.

Keywords

References

  1. Ramon y Cajal, S. (1995) Histology of the Nervous System of Man and Vertebrates, Oxford University Press, New York, USA.
  2. Scheibel, M. E., Lindsay, R. D., Tomiyasu, U. and Scheibel, A. B. (1975) Progressive dendritic changes in aging human cortex. Exp. Neurol. 47, 392-403 https://doi.org/10.1016/0014-4886(75)90072-2
  3. Buell, S. J. and Coleman, P. D. (1979) Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 206, 854-856 https://doi.org/10.1126/science.493989
  4. Arendt, T., Schindler, C., Bruckner, M. K., Eschrich, K., Bigl, V., Zedlick, D. and Marcova, L. (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein e4 allele. J. Neurosci. 17, 516-529 https://doi.org/10.1523/JNEUROSCI.17-02-00516.1997
  5. Mesulam, M.M. (1999) Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 24, 521-529 https://doi.org/10.1016/S0896-6273(00)81109-5
  6. Mehraein, P., Yamada, M. and Tarnowska-Dziduszko, E. (1975) Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. Adv. Neurol. 12, 453-458
  7. Paula-Barbosa, M. M., Mota Cardoso, R., Faria, R. and Cruz, C. (1978) Multivesicular bodies in cortical dendrites of two patients with Alzheimer's disease. J. Neurol. Sci. 36, 259-264 https://doi.org/10.1016/0022-510X(78)90086-2
  8. Arendt, T., Zvegintseva, H. G. and Leontovich, T. A. (1986) Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer's disease- A quantitative Golgi investigation. Neuroscience 19, 1265-1278 https://doi.org/10.1016/0306-4522(86)90141-7
  9. M. and Terry, R. (1994) Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci. Lett. 174, 67-72 https://doi.org/10.1016/0304-3940(94)90121-X
  10. de Ruiter, J. P. and Uylings, H. B. M. (1987) Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res. 402, 217-229 https://doi.org/10.1016/0006-8993(87)90028-X
  11. Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K. and McConlogue, L. (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050- 4058 https://doi.org/10.1523/JNEUROSCI.20-11-04050.2000
  12. Wu, C. C., Chawla, F., Games, D., Rydel, R. E., Freedman, S., Schenk, D., Young, W. G., Morrison, J. H. and Bloom, F. E. (2004) Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: digital morphometric analyses. Proc. Natl. Acad. Sci. U.S.A. 101, 7141-7146
  13. Odorizzi, G., Babst M. and Emr, S.D. (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847-858 https://doi.org/10.1016/S0092-8674(00)81707-9
  14. Katzmann, D.J., Babst, M. and Emr, S.D. (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145-155 https://doi.org/10.1016/S0092-8674(01)00434-2
  15. Babst, M., Katzmann, D.J., Snyder, W.B., Wendland, B. and Emr, S.D. (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283-289 https://doi.org/10.1016/S1534-5807(02)00219-8
  16. Babst, M., Katzmann, D.J., Estepa-Sabal, E.J., Meerloo, T. and Emr, S.D. (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271-282 https://doi.org/10.1016/S1534-5807(02)00220-4
  17. Chu, T., Sun, J., Saksena, S. and Emr, S. D. (2006) New component of ESCRT-I regulates endosomal sorting complex assembly. J. Cell Biol. 175, 815-823 https://doi.org/10.1083/jcb.200608053
  18. Bache, K. G., Brech, A., Mehlum, A. and Stenmark, H. (2003) Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435- 442 https://doi.org/10.1083/jcb.200302131
  19. Katzmann, D. J., Stefan, C. J., Babst, M. and Emr, S. D. (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413-423 https://doi.org/10.1083/jcb.200302136
  20. Nickerson, D. P., Russell, M. R. and Odorizzi, G. (2007) A concentric circle model of multivesicular body cargo sorting. EMBO Rep. 8, 644-650 https://doi.org/10.1038/sj.embor.7401004
  21. Hurley, J. H. (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4-11 https://doi.org/10.1016/j.ceb.2007.12.002
  22. Howard, T. L., Stauffer, D. R., Degnin, C. R. and Hollenberg, S. M. (2001) CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci. 114, 2395-2404
  23. Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D.J., Perisic, O., Emr, S.D. and Williams, R. L. (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735-739 https://doi.org/10.1038/nature06171
  24. Stuchell-Brereton, M. D., Skalicky, J. J., Kieffer, C., Karren, M. A., Ghaffarian, S., Sundquist, W. I. (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449, 740-744 https://doi.org/10.1038/nature06172
  25. Strack, B., Calistri, A., Craig, S., Popova, E. and Gottlinger, H. G. (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689-699 https://doi.org/10.1016/S0092-8674(03)00653-6
  26. von Schwedler, U. K., Stuchell, M., Muller, B., Ward, D. M., Chung, H. Y., Morita, E., Wang, H. E., Davis, T., He, G. P., Cimbora, D. M., et al. (2003) The protein network of HIV budding. Cell 114, 701-713 https://doi.org/10.1016/S0092-8674(03)00714-1
  27. Carlton, J. G., Agromayor, M., Martin-Serrano, J. (2008) Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl. Acad. Sci. USA 105, 10541-10546
  28. Carlton, J. G., Martin-Serrano, J. (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908-1912 https://doi.org/10.1126/science.1143422
  29. Irion, U. and St Johnston, D. (2007) Linksbicoid RNA localization localization requires specific binding of an endosomal sorting complex. Nature 445, 554-558 https://doi.org/10.1038/nature05503
  30. Kamura, T., Burian, D., Khalili, H., Schmidt, S. L., Sato, S., Liu, W. J., Conrad, M. N., Conaway, R. C., Conaway, J. W. and Shilatifard, A. J. (2001) Cloning and characterization of ELL-associated proteins EAP45 and EAP20. A role for yeast EAP-like proteins in regulation of gene expression by glucose. Biol. Chem. 276, 16528-16533 https://doi.org/10.1074/jbc.M010142200
  31. Stauffer, D. R., Howard, T. L., Nyun, T. and Hollenberg, S. M. (2001) CHMP1 is a novel nuclear matrix protein affecting chromatin structure and cell-cycle progression. J. Cell Sci. 114, 2383-2393
  32. Thompson, B. J., Mathieu, J., Sung, H. H., Loeser, E., Rorth, P. and Cohen, S. M. (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell. 9, 711-720 https://doi.org/10.1016/j.devcel.2005.09.020
  33. Vaccari, T. and Bilder, D. (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687-698 https://doi.org/10.1016/j.devcel.2005.09.019
  34. Moberg, K. H., Schelble, S., Burdick, S. K. and Hariharan, I. K. (2005) Mutations in erupted, the Drosophila ortholog of mammaliantumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699-710 https://doi.org/10.1016/j.devcel.2005.09.018
  35. Sweeney, N. T., Brenman, J. E., Jan, Y. N. and Gao, F. B. (2006) The coiled-coil protein Shrub controls neuronal morphogenesis in Drosophila. Curr. Biol. 16,1006-1011 https://doi.org/10.1016/j.cub.2006.03.067
  36. Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. and Gao, F. B. (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561-1567 https://doi.org/10.1016/j.cub.2007.07.029
  37. Mizushima, N., Levine, B., Cuervo, A. M. and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
  38. Tooze, J., Hollinshead, M., Ludwig, T., Howell, K., Hoflack, B. and Kern, H. (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J. Cell Biol. 111, 329-345 https://doi.org/10.1083/jcb.111.2.329
  39. Liou, W., Geuze, H. J., Geelen, M. J. and Slot, J. W. (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J. Cell Biol. 136, 61-70 https://doi.org/10.1083/jcb.136.1.61
  40. Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T. and Seglen, P. O. (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273, 21883-21892 https://doi.org/10.1074/jbc.273.34.21883
  41. Lucocq, J. and Walker, D. (1997) Evidence for fusion between multilamellar endosomes and autophagosomes in HeLa cells. Eur. J. Cell Biol. 72, 307-313
  42. Kuma, A., Matsui, M. and Mizushima, N. (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3, 323-328 https://doi.org/10.4161/auto.4012
  43. Lee, J. A. and Gao, F. B. (2008) Roles of ESCRT in autophagy- associated neurodegeneration. Autophagy 4, 230-232 https://doi.org/10.4161/auto.5384
  44. Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerod, L., Fisher, E. M., Isaacs, A., Brech, A., Stenmark, H. and Simonsen, A. (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485-500 https://doi.org/10.1083/jcb.200702115
  45. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 https://doi.org/10.1038/nature04723
  46. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
  47. Boxer, A. L. and Miller, B. L. (2005) Clinical features of frontotemporal dementia. Alzheimer Dis. Assoc. Disord. 19(Suppl. 1), S3-6 https://doi.org/10.1097/01.wad.0000183086.99691.91
  48. Watts, G. D., Wymer, J., Kovach, M. J., Mehta, S. G., Mumm, S., Darvish, D., Pestronk, A., Whyte, M. P. and Kimonis, V. E. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377-381 https://doi.org/10.1038/ng1332
  49. Baker, M. et al. (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916-919 https://doi.org/10.1038/nature05016
  50. Cruts, M. et al. (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920-924 https://doi.org/10.1038/nature05017
  51. Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q. and Lee, V. M. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133 https://doi.org/10.1126/science.1134108
  52. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y. and Oda, T. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602-611 https://doi.org/10.1016/j.bbrc.2006.10.093
  53. Skibinski, G., Parkinson, N. J., Brown, J. M., Chakrabarti, L., Lloyd, S. L., Hummerich, H., Nielsen. J. E., Hodges, J. R., et al. (2005) Mutations in the endosomal ESCRTIIIcomplex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806-808 https://doi.org/10.1038/ng1609
  54. Momeni P, Bell J, Duckworth J, Hutton M, Mann D, Brown SP, Hardy J. (2006) Sequence analysis of all identified open reading frames on the frontal temporal dementia haplotype on chromosome 3 fails to identify unique coding variants except in CHMP2B. Neurosci. Lett. 410, 77-79 https://doi.org/10.1016/j.neulet.2006.06.065
  55. Lindquist, S. G., Braedgaard, H., Svenstrup, K., Isaacs, A. M., Nielsen, J. E.; FReJA Consortium. (2008) Frontotemporal dementia linked to chromosome 3 (FTD-3)--current concepts and the detection of a previously unknown branch of the Danish FTD-3 family. Eur. J. Neurol. 15, 667-670 https://doi.org/10.1111/j.1468-1331.2008.02144.x
  56. van der Zee, J., Urwin, H., Engelborghs, S., Bruyland, M., Vandenberghe, R,. Dermaut, B., De Pooter, T., Peeters, K., Santens, P., De Deyn, P. P., Fisher, E. M., Collinge, J., Isaacs, A. M. and Van Broeckhoven, C. (2008) CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum. Mol. Genet. 17, 313-322 https://doi.org/10.1093/hmg/ddm309
  57. Momeni, P., Rogaeva, E., Van Deerlin, V., Yuan, W., Grafman, J., Tierney, M., Huey, E., Bell, J., Morris, C. M., Kalaria, R. N., van Rensburg, S. J., Niehaus, D., Potocnik, F., Kawarai, T., Salehi-Rad, S., Sato, C., St George-Hyslop, P. and Hardy, J. (2006) Genetic variability in CHMP2B and frontotemporal dementia. Neurodegener. Dis. 3, 129- 133 https://doi.org/10.1159/000094771
  58. Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D. J., Perisic, O., Emr, S. D. and Williams, R. L. (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735-744 https://doi.org/10.1038/nature06171
  59. Stuchell-Brereton, M. D., Skalicky, J. J., Kieffer, C., Karren, M. A., Ghaffarian, S. and Sundquist, W. I. (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449, 740-744 https://doi.org/10.1038/nature06172

Cited by

  1. Autophagy deregulation in neurodegenerative diseases - recent advances and future perspectives vol.118, pp.3, 2011, https://doi.org/10.1111/j.1471-4159.2011.07314.x
  2. TMEM106B and ApoE polymorphisms in CHMP2B -mediated frontotemporal dementia (FTD-3) vol.59, 2017, https://doi.org/10.1016/j.neurobiolaging.2017.06.026
  3. Mechanism and Regulation of Autophagy and Its Role in Neuronal Diseases vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8921-4
  4. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density vol.121, pp.12, 2011, https://doi.org/10.1172/JCI45677
  5. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin vol.210, pp.6, 2015, https://doi.org/10.1083/jcb.201502029
  6. p75NTR is mainly responsible for Aβ toxicity but not for its internalization: a primary study vol.33, pp.5, 2012, https://doi.org/10.1007/s10072-011-0892-x
  7. Localization of CHMP2B-immunoreactivity in the brainstem of Lewy body disease vol.33, pp.3, 2013, https://doi.org/10.1111/j.1440-1789.2012.01346.x
  8. Neuronal Functions of ESCRTs vol.21, pp.1, 2012, https://doi.org/10.5607/en.2012.21.1.9
  9. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders vol.11, pp.2, 2015, https://doi.org/10.1007/s13273-015-0011-9
  10. Autophagy and Its Normal and Pathogenic States in the Brain vol.37, pp.1, 2014, https://doi.org/10.1146/annurev-neuro-071013-014149
  11. MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia vol.5, pp.5, 2010, https://doi.org/10.1371/journal.pone.0010551
  12. The role of CHMP2BIntron5 in autophagy and frontotemporal dementia vol.1649, 2016, https://doi.org/10.1016/j.brainres.2016.02.051
  13. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations vol.8, 2017, https://doi.org/10.1038/ncomms15277
  14. Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models—Defects in Endosomal–Lysosomal Pathway vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061714
  15. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses pp.01986325, 2019, https://doi.org/10.1002/med.21571