DOI QR코드

DOI QR Code

Altered free amino acid levels in brain cortex tissues of mice with Alzheimer's disease as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives

  • Paik, Man-Jeong (Institute for Neuroregeneration and Stem Cell Research, School of Medicine, Ajou University) ;
  • Cho, In-Seon (Biometabolite Analysis Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Mook-Jung, In-Hee (Department of Biochemistry, College of Medicine, Seoul National University) ;
  • Lee, Gwang (Institute for Neuroregeneration and Stem Cell Research, School of Medicine, Ajou University) ;
  • Kim, Kyoung-Rae (Biometabolite Analysis Laboratory, College of Pharmacy, Sungkyunkwan University)
  • Published : 2008.01.31

Abstract

The altered amino acid (AA) levels as neurotransmitter closely correlate to neurodegenerative conditions including Alzheimer's disease (AD). Target profiling analysis of nineteen AAs in brain cortex samples from three Tg2576 mice as AD model and three littermate mice as control model was achieved as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography. Subsequently, star pattern recognition analysis was performed on the brain AA levels of AD mice after normalization to the corresponding control median values. As compared to control mice, $\gamma$-aminobutyric acid among ten AAs found in brain samples was significantly reduced (P < 0.01) while leucine was significantly elevated (P < 0.02) in AD mice. The normalized AA levels of the three AD mice were transformed into distorted star patterns which was different from the decagonal shape of control median. The present method allowed visual discrimination of the three AD mice from the controls based on the ten normalized AA levels.

Keywords

References

  1. Cheng, H., Vetrivel, K. S., Gong, P., Meckler, X., Parent, A. and Thinakaran, G. (2007) Mechanisms of disease: new therapeutic strategies for Alzheimer's disease-targeting APP processing in lipid rafts. Nat. Clin. Pract. Neurol. 3, 374-382. https://doi.org/10.1038/ncpneuro0549
  2. Ehehalt, R., Keller, P., Haass, C., Thiele, C. and Simons, K. (2003) Amyloidogenic processing of the Alzheimer beta- amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113-123. https://doi.org/10.1083/jcb.200207113
  3. Jelic, V. and Wahlund, L. O. (2007) Diagnostic imaging devices in Alzheimer's disease. Expert Rev. Med. Devices 4, 475-487. https://doi.org/10.1586/17434440.4.4.475
  4. Ellison, D. W., Beal, M. F., Mazurek, M. F., Bird, E. D. and Martin, J. B. (1986) A postmortem study of amino acid neurotransmitters in Alzheimer's disease. Ann. Neurol. 20, 616-621. https://doi.org/10.1002/ana.410200510
  5. German, D. C., Gurnani, P., Nandi, A., Garner, H. R., Fisher, W., Diaz-Arrastia, R., O'suilleabhain, P. and Rosenblatt, K. P. (2007) Serum biomarkers for Alzheimer's disease: proteomic discovery. Biomed. Pharmacother. 61, 383-389. https://doi.org/10.1016/j.biopha.2007.05.009
  6. Van Dam, D., Marescau, B., Engelborghs, S., Cremers, T., Mulder, J., Staufenbiel, M. and De Deyn, P. P. (2005) Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models. Neurochem. Int. 46, 409-422. https://doi.org/10.1016/j.neuint.2004.11.005
  7. Liu, H., Sanuda-Pena, M. C., Harvey-White, J. D., Kalra, S. and Cohen, S. A. (1998) Determination of submicromolar concentrations of neurotransmitter amino acids by fluorescence detection using a modification of the 6-aminoquinolyl- N-hydroxysuccinimidyl carbamate method for amino acid analysis. J. Chromatogr. A 828, 383-395. https://doi.org/10.1016/S0021-9673(98)00836-X
  8. Perry, T. L., Yong, V. W., Bergeron, C., Hansen, S. and Jones, K. (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Ann. Neurol. 21, 331-336. https://doi.org/10.1002/ana.410210403
  9. Qu, Y., Arckens, L., Vandenbussche, E., Geeraerts, S. and Vandesande, F. (1998) Simultaneous determination of total and extracellular concentrations of the amino acid neurotransmitters in cat visual cortex by microbore liquid chromatography and electrochemical detection. J. Chromatogr. A 798, 19-26. https://doi.org/10.1016/S0021-9673(97)01170-9
  10. D'Aniello, A., Fisher, G., Migliaccio, N., Cammisa, G., D' Aniello, E. and Spinelli, P. (2005) Amino acids and transaminases activity in ventricular CSF and in brain of normal and Alzheimer patients. Neurosci. Lett. 388, 49-53. https://doi.org/10.1016/j.neulet.2005.06.030
  11. McKenzie, J. A. M., Watson, C. J., Rostand, R. D., German, I., Witowski, S. R. and Kennedy, R. T. (2002) Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids. J. Chromatogr. A 962, 105-115. https://doi.org/10.1016/S0021-9673(02)00533-2
  12. Fiamegos, Y. C., Nanos, C. G. and Stalikas, C. D. (2004) Ultrasonic-assisted derivatization reaction of amino acids prior to their determination in urine by using single-drop microextraction in conjunction with gas chromatography. J. Chromatogr. 813, 89-94. https://doi.org/10.1016/j.jchromb.2004.09.013
  13. Husek, P., Matucha, P., Vrankova, A. and Simek P. (2003) Simple plasma work-up for a fast chromatographic analysis of homocysteine, cysteine, methionine and aromatic amino acids. J. Chromatogr. 789, 311-322. https://doi.org/10.1016/S1570-0232(03)00104-1
  14. Nozal, M. J., Bernal, J. L., Toribio, M. L., Diego, J. C. and Ruiz, A. (2004) Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection. J. Chromatogr. A 1047, 137-146. https://doi.org/10.1016/j.chroma.2004.07.013
  15. Wang, J., Huang, Z.-H., Gage, D. A. and Watson, J. T. (1994) Analysis of amino acids by gas chromatographyflame ionization detection and gas chromatography-mass spectrometry: simultaneous derivatization of functional groups by an aqueous-phase chloroformate-mediated reaction. J. Chromatogr. A 663, 71-78. https://doi.org/10.1016/0021-9673(94)80497-4
  16. Shah, A. J., Crespi, F. and Heidbreder, C. (2002) Amino acid neurotransmitters: separation approaches and diagnostic value. J. Chromatogr. B 781, 151-163. https://doi.org/10.1016/S1570-0232(02)00621-9
  17. Halket, J. M., in Blau, K. and Halket, J. M. (1993) Handbook of derivatives for chromatography; in derivatives for gas chromatography-mass spectrometry, pp. 297-325, John Wiley & Sons, Chichester, UK.
  18. Kuhara, T. (2001) Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry. J. Chromatogr. 758, 3-25. https://doi.org/10.1016/S0378-4347(01)00138-4
  19. Matsumoto, I. and Kuhara, T. (1992) Inborn errors of amino acid and organic acid metabolism; in Mass Spectrometry, Clinical and Biomedical Applications, Desiderio, D. M. (ed.), pp. 259-298, Plenum Press, New York, USA.
  20. Matsumoto, I. and Kuhara, T. (1996) A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry-rapid, practical, and simultaneous urinary metabolite analysis. Mass Spectrom. Rev. 5, 43-57.
  21. Mawhinney, T. P., Robinett, R. S. R., Atalay, A. and Madson M. A. (1986) Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J. Chromatogr. 358, 231-242. https://doi.org/10.1016/S0021-9673(01)90333-4
  22. Shinka, T., Inoue, Y., Ohse, M., Ito, A., Ohfu, M., Hirose, S. and Kuhara, T. (2002) Rapid and sensitive detection of urinary 4-hydroxybutyric acid and its related compounds by gas chromatography-mass spectrometry in a patient with succinic semialdehyde dehydrogenase deficiency. J. Chromatogr. B 776, 57-63. https://doi.org/10.1016/S1570-0232(02)00126-5
  23. Shoemaker, J. D. and Elliott, W. H. (1991) Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J. Chromatogr. 562, 125-138. https://doi.org/10.1016/0378-4347(91)80571-S
  24. Domergue, N., Pugniere, M. and Previero, A. (1993) Onestep conversion of amino acids into N-menthyloxycarbonyl alkyl ester derivatives for chiral gas chromatography. Anal. Biochem. 214, 420-425. https://doi.org/10.1006/abio.1993.1517
  25. Husek, P. (1991) Rapid derivatization and gas chromatographic determination of amino acids. J. Chromatogr. 552, 289-299. https://doi.org/10.1016/S0021-9673(01)95945-X
  26. Husek, P. (1995) Simultaneous profile analysis of plasma amino and organic acids by capillary gas chromatography. J. Chromatogr. B 669, 352-357. https://doi.org/10.1016/0378-4347(95)00115-Y
  27. Mayadunne, R., Nguyen, T. T. and Marriott, P. J. (2005) Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 382, 836-847. https://doi.org/10.1007/s00216-005-3083-x
  28. Matsumura, S., Kataoka, H. and Makita, M. (1995) Capillary gas chromatographic analysis of protein amino acids as their N(O,S)-isobutoxycarbonyl methyl ester derivatives. Biomed. Chromatogr. 9, 205-210. https://doi.org/10.1002/bmc.1130090503
  29. Matsumura, S., Kataoka H. and Makita M. (1996) Determination of amino acids in human serum by capillary gas chromatography. J. Chromatogr. B 681, 375-380. https://doi.org/10.1016/0378-4347(96)00053-9
  30. Kim, K. R., Kim, J. H., Cheong, E. J. and Jeong C. M. (1996) Gas chromatographic amino acid profiling of wine samples for pattern recognition. J. Chromatogr. A 722, 303-309. https://doi.org/10.1016/0021-9673(95)00666-4
  31. Lee, J., Kim, K. R., Won, S., Kim, J. H. and Goto, J. (2001) Enantioseparation of chiral amino acids as the N(O,S)- ethoxycarbonylated diastereomeric esters by achiral dual- capillary column gas chromatography. Analyst 216, 2128-2133.
  32. Oh, C. H., Kim, J. H., Kim, K. R., Brownson, D. M. and Mabry, T. J. (1994) Simultaneous gas chromatographic analysis of non-protein and protein amino acids as N(O,S)- isobutyloxycarbonyl tert.-butyldimethylsilyl derivatives. J. Chromatogr. A 669, 125-137. https://doi.org/10.1016/0021-9673(94)80344-7
  33. Oh, C. H., Kim, J. H., Kim, K. R. and Mabry, T. J. (1995) Rapid gas chromatographic screening of edible seeds, nuts and beans for non-protein and protein amino acids. J. Chromatogr. A 708, 131-141. https://doi.org/10.1016/0021-9673(95)00381-V
  34. Oh, C. H., Mabry, T. J., Kim, K. R. and Kim, J. H. (1995) GC-MS analysis of nonprotein amino acids in Gymnocladus dioicus as N(O,S)-isobutyloxycarbonyl silyl derivatives. J. Chromatogr. Sci. 33, 399-404. https://doi.org/10.1093/chromsci/33.7.399
  35. Paik, M. J. and Kim, K. R. (2004) Sequential ethoxycarbonylation, methoximation and tert-butyldimethylsilylation for simultaneous determination of amino acids and carboxylic acids by dual-column gas chromatography. J. Chromatogr. A 1034, 13-23. https://doi.org/10.1016/j.chroma.2004.02.032
  36. Kim, K. R., Paik, M. J., Kim, J. H., Dong, S. W. and Jeong, D. H. (1997) Rapid gas chromatographic profiling and screening of biologically active amines. J. Pharm. Biomed. Anal. 15, 1309-1318. https://doi.org/10.1016/S0731-7085(96)02048-1
  37. Choi, M. H., Kim, K. R., Kim, I. S., Lho, D. S. and Chung, B. C. (2001) Increased hair polyamine levels in patients with Alzheimer's disease. Ann. Neurol. 50, 28.
  38. Paik, M. J., Lee, S., Cho, K. H. and Kim, K. R. (2006) Urinary polyamines and N-acetylated polyamines in four patients with Alzheimer's disease as their N-ethoxycarbonyl- N-pentafluoropropionyl derivatives by gas chromatography- mass spectrometry in selected ion monitoring mode. Anal. Chim. Acta 576, 55-60. https://doi.org/10.1016/j.aca.2006.01.070
  39. Paik, M. J., Park, K. H., Park, J. J., Kim, K. R., Ahn, Y. H., Shin, G. T. and Lee, G. (2007) Patterns of Plasma Fatty Acids in Rat Models with Adenovirus Infection. J. Biochem. Mol. Biol. 40, 119-124. https://doi.org/10.5483/BMBRep.2007.40.1.119
  40. Shin, S. J., Lee, S. E., Boo, J. H., Kim, M., Yoon, Y.-D., Kim, S.-I. and Mook-Jung, I. (2004) Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics 4, 3359-3368. https://doi.org/10.1002/pmic.200400961

Cited by

  1. Metabolomic study for monitoring of biomarkers in mouse plasma with asthma by gas chromatography–mass spectrometry vol.1063, 2017, https://doi.org/10.1016/j.jchromb.2017.08.039
  2. Rapid and reliable quantitation of amino acids and myo-inositol in mouse brain by high performance liquid chromatography and tandem mass spectrometry vol.893-894, 2012, https://doi.org/10.1016/j.jchromb.2012.01.035
  3. Metabolomic study of aging in mouse plasma by gas chromatography–mass spectrometry vol.1025, 2016, https://doi.org/10.1016/j.jchromb.2016.04.052
  4. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster vol.53, pp.1, 2016, https://doi.org/10.1007/s12035-014-9003-3
  5. Simultaneous Determination of Neuroactive Amino Acids in Serum by CZE Coupled with Amperometric Detection vol.76, pp.3-4, 2013, https://doi.org/10.1007/s10337-012-2378-2