DOI QR코드

DOI QR Code

Characterization of a novel Cotesia vestalis polydnavirus (CvBV) gene containing a ser-rich motif expressed in Plutella xylostella larvae

  • Shi, Min (Institute of Insect Sciences, Zhejiang University) ;
  • Chen, Ya-Feng (Institute of Insect Sciences, Zhejiang University) ;
  • Huang, Fang (Institute of Insect Sciences, Zhejiang University) ;
  • Zhou, Xue-Ping (Institute of Biotechnology, Zhejiang University) ;
  • Chen, Xue-Xin (Institute of Insect Sciences, Zhejiang University)
  • Published : 2008.08.31

Abstract

Cotesia vestalis is an endoparasitoid of Plutella xylostella larvae and injects a polydnavirus (CvBV) into its host during oviposition. In this report we characterize the gene, CvBV3307, and its products. CvBV3307 is located on segment S33 of the CvBV genome, is 517 bp, and encodes a putative protein of 122 amino acids, including a serine-rich region. The expression pattern of CvBV3307 in parasitized larvae and the subcellular localization of CvBV3307 only in granulocytes indicated that it might be involved in early protection of parasitoid eggs from host cellular encapsulation and in manipulating the hormone titer and developmental rhythm of host larvae. Western blot analysis showed that the size of the immunoreactive protein (about 55 kDa) in parasitized hosts at 48 hours post parasitization (h p.p.) is much larger than the predicted molecular weight of 13.6 kDa, which suggests that CvBV3307 undergoes extensive post-translational modification in hosts.

Keywords

References

  1. Turnbull, M. and Webb, B. (2002) Perspectives on polydnavirus origins and evolution. Adv. Virus Res. 58, 203-254. https://doi.org/10.1016/S0065-3527(02)58006-4
  2. Kroemer, J. A. and Webb, B. A. (2004) Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49, 431-456. https://doi.org/10.1146/annurev.ento.49.072103.120132
  3. Fleming, J. A. and Summers, M. D. (1986) Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus DNA suggestive of integrated and extrachromosomal polydnavirus DNAs. J. Virol. 57, 552-562.
  4. Stoltz, D. B. (1990) Evidence for chromosomal transmission of polydnavirus DNA. J. Gen. Virol. 71, 1051-1056. https://doi.org/10.1099/0022-1317-71-5-1051
  5. Stoltz, D. B., Guzo, D. and Cook, D. (1986) Studies on polydnavirus transmission. Virology 155, 120-131. https://doi.org/10.1016/0042-6822(86)90173-X
  6. Stoltz, D. B. (1993) The polydnavirus life cycle; in Parasite and Pathogens of Insects Beckage, N. E., Thompson, S. N. and Federici, B. A. (eds), pp. 167-187, NY Academic Press.
  7. Theilmann, D. A. and Summers, M. D. (1988) Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Campoletis sonorensis and Heliothis virescens. Virology 167, 329-341.
  8. Shaw, M. R. (2003) Revised synonymy in the genus Cotesia (Hymenoptera: Braconidae: Microgastrinae): the identity of Microgaster vestalis Haliday, 1834, as a senior synonym of Apanteles plutellae Kurdjumov, 1912. Entomol. Gazette 54, 187-189.
  9. Choi, J. Y., Roh, J. Y., Kang, J. N., Shim, H. J., Woo, S. D., Jin, B. R., Li, M. S. and Je, Y. H. (2005) Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493. https://doi.org/10.1016/j.bbrc.2005.04.146
  10. Espagne, E., Dupuy, C., Huguet, E., Cattolico, L., Provost, B., Martins, N., Poirie, M., Periquet, G. and Drezen, J. M. (2004) Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306, 286-289. https://doi.org/10.1126/science.1103066
  11. Yu, R. X., Chen, Y. F., Chen, X. X., Huang, F., Lou, Y. G. and Liu, S. S. (2007) Effects of venom/calyx fluid from the endoparasitic wasp Cotesia plutellae on the hemocytes of its host Plutella xylostella in vitro. J. Insect Physiol. 53, 22-29. https://doi.org/10.1016/j.jinsphys.2006.09.011
  12. Chen, Y. F., Shi, M., Huang, F. and Chen, X. X. (2007) Characterization of two genes of Cotesia vestalis polydnavirus and their expression patterns in the host Plutella xylostella. J. Gen. Virol. 88, 3317-3322. https://doi.org/10.1099/vir.0.82999-0
  13. Thoetkiattikul, H., Beck, M. H. and Strand, M. R. (2005) Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response. Proc. Natl. Acad. Sci. U.S.A. 102, 11426-11431 https://doi.org/10.1073/pnas.0505240102
  14. Trudeau, D., Witherell, R. A. and Strand, M. R. (2000) Characterization of two novel Microplitis demolitor polydnavirus mRNAs expressed in Pseudoplusia includens haemocytes. J. Gen. Virol. 81, 3049-3058. https://doi.org/10.1099/0022-1317-81-12-3049
  15. Gitaua, C.W., Gundersen-Rindalb, D., Pedronib, M., Mbugic, P.J. and Dupasd, S. (2007) Differential expression of the CrV1 haemocyte inactivation-associated polydnavirus gene in the African maize stem borer Busseola fusca (Fuller) parasitized by two biotypes of the endoparasitoid Cotesia sesamiae (Cameron). J. Insect Physiol. 53, 676-684. https://doi.org/10.1016/j.jinsphys.2007.04.008
  16. Solovyev, V. V. and Salamov, A. A. (1999) INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects. Nucleic Acids Res. 27, 248-250. https://doi.org/10.1093/nar/27.1.248
  17. Xia, K., Knipe, D. M. and Deluca, N. A. (1996) Role of protein kinase A and the serine-rich region of herpes simplex virus Type 1 ICP4 in viral replication. J. Virol. 70, 1050-1060.
  18. Paterson, T. and Everett, R. D. (1990) A prominent serine- rich region in Vmw175, the major transcriptional regulator protein of herpes simplex virus type 1, is not essential for virus growth in tissue culture. J. Gen. Virol. 71, 1775-1783. https://doi.org/10.1099/0022-1317-71-8-1775
  19. Henikoff, S. and Henikoff, J. G. (1994) Protein family classification based on searching a database of blocks. Genomics 19, 97-107. https://doi.org/10.1006/geno.1994.1018
  20. Bai, S. F., Chen, X. X., Cheng, J. A., Fu, W. J. and He, J. H. (2003) Characterization of Cotesia plutellae polydnavirus and its physiological effects on the diamondback moth, Plutella xylostella larvae. Acta. Entomol. Sinica. 46, 401-408.
  21. Gilbert, L. I., Rybczynski, R. and Warren, J. T. (2002) Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 47, 883-916. https://doi.org/10.1146/annurev.ento.47.091201.145302
  22. Beckage, N. E. and Gelman, D. B. (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49, 299-330. https://doi.org/10.1146/annurev.ento.49.061802.123324
  23. Pennacchio, F. and Strand, M. R. (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol. 51, 233-258. https://doi.org/10.1146/annurev.ento.51.110104.151029
  24. Harwood, S. H., Grosovsky, A. J., Cowles, E. A., Davis, J. W. and Beckage, N. E. (1994) An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205, 381-392. https://doi.org/10.1006/viro.1994.1659
  25. Lackie, A. M., Takle, G. and Tetley, L. (1985) Haemocytic encapsulation in the locust Schistocerca gregaria (Orthoptera) and in the cockroach Periplaneta americana (Dictyoptera). Cell Tiss. Res. 240, 343-351.
  26. Pech, L. L. and Strand, M. R. (1996) Granular cells are required for encapsulation of foreign targets by insect haemocytes. J. Cell Sci. 109, 2053-2060.
  27. Sato, S., Akai, H. and Sawada, H. (1976) An ultrastructrural study of capsule formation by Bombyx hemocytes. Ann. Zool. Japan 49, 177-188.
  28. Schmit, A. R. and Ratcliffe, N. A. (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. J. Insect Physiol. 23, 175-184. https://doi.org/10.1016/0022-1910(77)90027-0
  29. Schmit, A. R. and Ratcliffe, N. A. (1978) The encapsulation of araldite implants and recognition of foreignness in Clitumnus extradentatus. J. Insect Physiol. 24, 511-521. https://doi.org/10.1016/0022-1910(78)90052-5
  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  31. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  32. Xu, H. J., Liu, Y. H., Yang, Z. N. and Zhang, C. X. (2006) Characterization of ORF39 from Helicoverpa armigera Single-nucleocapsid Nucleopolyhedrovirus, the Gene Containing RNA Recognition Motif. J. Biochem. Mol. Biol. 39, 263-269. https://doi.org/10.5483/BMBRep.2006.39.3.263

Cited by

  1. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome vol.414, pp.1, 2011, https://doi.org/10.1016/j.virol.2011.03.009
  2. A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus vol.43, pp.4, 2010, https://doi.org/10.5483/BMBRep.2010.43.4.279