DOI QR코드

DOI QR Code

Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice

  • 발행 : 2008.09.30

초록

The present study was undertaken to investigate the protective role of taurine (2-aminoethanesulfonic acid) against cadmium (Cd) induced oxidative stress in murine erythrocytes. Cadmium chloride ($CdCl_2$) was chosen as the source of Cd. Experimental animals were treated with either $CdCl_2$ alone or taurine, followed by Cd exposure. Cd intoxication reduced hemoglobin content and the intracellular Ferric Reducing/Antioxidant Power of erythrocytes, along with the activities of antioxidant enzymes, glutathione content, and total thiols. Conversely, intracellular Cd content, lipid peroxidation, protein carbonylation, and glutathione disulphides were significantly enhanced in these cells. Treatment with taurine before Cd intoxication prevented the toxin-induced oxidative impairments in the erythrocytes of the experimental animals. Overall, the results suggest that Cd could cause oxidative damage in murine erythrocytes and that taurine may play a protective role in reducing the toxic effects of this particular metal.

키워드

참고문헌

  1. Ikediobi, C. O., Badisa, V. L., Ayuk-Takem, L. T., Latinwo, L. M. and West, J. (2004) Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int. J. Mol. Med. 14, 87-92
  2. Habeebu, S. S., Liu, J. and Klaassen, C.D. (1998) Cadmium- induced apoptosis in mouse liver. Toxicol. Appl. Pharmacol. 149, 203-209 https://doi.org/10.1006/taap.1997.8334
  3. Bauman, J. W., Liu, J. and Klaassen, C. D. (1993) Production of metalothionein and heat-shock proteins in response to metals. Fundam. Appl. Toxicol. 21, 15-22 https://doi.org/10.1006/faat.1993.1066
  4. Sarkar, S., Yadav, P. and Bhatnagar, D. (1997) Cd induced lipid peroxidation and the antioxidant system in rat erythrocytes: Role of antioxidants. J. Trace. Elem. Biol. 11, 8-13 https://doi.org/10.1016/S0946-672X(97)80002-8
  5. Horiguchi, H., Sato, M., Konno, N. and Fukushima, M. (1996) Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys. Arch. Toxicol. 71, 11-19 https://doi.org/10.1007/s002040050352
  6. Ognjanovic, B. I., Pavlovic, S. Z., Maletic, S. D., Zikic, R. V., Stajn, A. S., Radojicic, R. M., Saicic, J. S. and Petrovic, V. M. (2003) Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol. Res. 52, 563-570
  7. Mansour, H. H., Hafez, H. F. and Fahmy, N. M. (2006) Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol. 39, 656-661 https://doi.org/10.5483/BMBRep.2006.39.6.656
  8. Manna, P., Sinha, M. and Sil, P. C. (2007) A 43 kD protein isolated from the herb Cajanus indicus L attenuates sodium fluoride-induced hepatic and renal disorders in vivo. J. Biochem. Mol. Biol. 40, 382-395 https://doi.org/10.5483/BMBRep.2007.40.3.382
  9. Atmaca, G. (2004) Antioxidant effects of sulfur-containing amino acids. Yonsei. Med. J. 45, 776-788 https://doi.org/10.3349/ymj.2004.45.5.776
  10. Balkan, J., Kanbagli, O., Aykac-Toker, G. and Uysal, M. (2002) Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol treated rats. Biol. Pharm. Bull. 25, 1231-1233 https://doi.org/10.1248/bpb.25.1231
  11. Gurer, H., Ozgunes, H., Saygin, E. and Ercal, N. (2001) Antioxidant effect of taurine against lead-induced oxidative stress. Arch. Environ. Contam. Toxicol. 41, 397-402 https://doi.org/10.1007/s002440010265
  12. Timbrell, J. A., Seabra, V. and Water.eld, C. J. (1995) The in vivo and in vitro protective properties of taurine. Gen. Pharmacol. 26, 453-462 https://doi.org/10.1016/0306-3623(94)00203-Y
  13. Wright, C. E., Tallan, H. H. and Linn, Y. Y. (1986) Taurine: biological update. Annu. Rev. Biochem. 55, 427-453 https://doi.org/10.1146/annurev.bi.55.070186.002235
  14. Kostic, M. M., Ognjanovic, B., Dimitrijevic, S., Zikic, R. V., Stajn, A., Rosiv, G. L. and Zivkovic, R. V. (1993) Cadmium induced changes of antioxidant and metabolic status in red blood cells of rats: in vivo effects. Eur. J. Haematol. 51, 86-92 https://doi.org/10.1111/j.1600-0609.1993.tb01598.x
  15. Zikic, R. V., Stajn, A. S., Pavlovic, S. Z., Ognjanovic, B. I. and Saicic, Z. S. (2001) Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res. 50, 105-111
  16. Sarkar, S., Yadav, P. and Bhatnagar, D. (1998) Lipid peroxidative damage on cadmium exposure and alterations in antioxidant system in rat erythrocytes: a study with relation to time. Biometals 11, 153-157 https://doi.org/10.1023/A:1009286130324
  17. Sarkar, S., Yadav, P., Trivedi, R., Bansal, A. K. and Bhatnagar, D. (1995) Cadmium induced lipid peroxidation and the status of antioxidant system in rat tissues. J. Trace Elem. Med. Biol. 9, 144-149 https://doi.org/10.1016/S0946-672X(11)80038-6
  18. Babu, K. R., Rajmohan, H. R., Rajan, B. K. and Kumar, K. M. (2006) Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium. Toxicol. Ind. Health 22, 329-335 https://doi.org/10.1177/0748233706071736
  19. Wang, W. and Ballatori, N. (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol. Rev. 50, 335-355
  20. Li, W., Zhao, Y. and Chou, I. N. (1993) Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65-79 https://doi.org/10.1016/0300-483X(93)90138-I
  21. Chiu, D., Kuypers, F. and Lubin, B. (1989) Lipid peroxidation in human red cells. Semin. Hematol. 26, 257-276
  22. Hwang, D.F. and Wang, L. C. (2001) Effect of taurine on toxicity of cadmium in rats. Toxicology 167, 173-180 https://doi.org/10.1016/S0300-483X(01)00472-3
  23. Jiang, N., Tan, N. S., Ho, B. and Ding, J. L. (2007) Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nature Immunol. 8, 1114-1122 https://doi.org/10.1038/ni1501
  24. Pari, L., Murugavel, P., Sitasawad, S. L. and Kumar, K. S. (2007) Cytoprotective and antioxidant role of diallyl tetrasulfide on cadmium induced renal injury: An in vivo and in vitro study. Life Sci. 80, 650-658 https://doi.org/10.1016/j.lfs.2006.10.013
  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  26. Dacie, J. V. and Lewis, S. M. (1984) Practical Haematology. New York: Churchill Livingstone; 32
  27. Esterbauer, H. and Cheeseman, K. H. (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407-421 https://doi.org/10.1016/0076-6879(90)86134-H
  28. Uchida, K. and Stadtman, E. R. (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehydes-3-phosphate dehydrogenase. J. Biol. Chem. 268, 6388-6393
  29. Jiang, Z. Y., Hunt, J. V. and Wolff, S. P. (1992) Detection of lipid hydroperoxide using the FOX method. Anal. Biochem. 202,384-389 https://doi.org/10.1016/0003-2697(92)90122-N
  30. LeBel, C. P. and Bondy, S. C. (1990) Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. Int. 17, 435-440 https://doi.org/10.1016/0197-0186(90)90025-O
  31. Kim, J. D., McCarter, R. J. M. and Yu, B. P. (1996) Influence of age, exercise and dietary restriction on oxidative stress in rats. Aging Clin. Exp. Res. 8, 123-129 https://doi.org/10.1007/BF03339566
  32. Nishikimi, M., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  33. Kakkar, P., Das, B. and Viswanathan, P. N. (1984) A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 21,130-132
  34. Bonaventura, J., Schroeder, W. A. and Fang, S. (1972) Human erythrocyte catalase: an improved method of isolation and a revaluation of reported properties. Arch. Biochem. Biophys. 150, 606-617 https://doi.org/10.1016/0003-9861(72)90080-X
  35. Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974) Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139
  36. Smith, I. K., Vierheller, T. L. and Thorne, C. A. (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid). Anal. Biochem. 175, 408-413 https://doi.org/10.1016/0003-2697(88)90564-7
  37. Flohe, L. and Gunzler, W. A. (1984) Assay of glutathione peroxidase. Methods Enzymol. 105, 114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  38. Lee, C. Y. (1982) Glucose-6-phosphate dehydrogenase from mouse. Methods Enzymol. 89, 252-257 https://doi.org/10.1016/S0076-6879(82)89045-9
  39. Ellman, G. L. (1959) Tissue sulfhydryl group. Arch. Biochem. Biophys. 82, 70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  40. Hissin, P. J. and Hilf, R. A. (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226 https://doi.org/10.1016/0003-2697(76)90326-2
  41. Sedlak, J. and Lindsay, R. H. (1958) Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem. 24/25, 192-205
  42. Benzie, I. F. F. and Strain, J. J. (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299, 15-27 https://doi.org/10.1016/S0076-6879(99)99005-5

피인용 문헌

  1. Effect of glutathione on the cadmium chelation of EDTA in a patient with cadmium intoxication vol.30, pp.1, 2011, https://doi.org/10.1177/0960327110369818
  2. Conformational preferences of taurine in the gas phase and in water vol.1025, 2013, https://doi.org/10.1016/j.comptc.2013.09.007
  3. Spectrometric and Chromatographic Study of Reactive Oxidants Hypochlorous and Hypobromous Acids and Their Interactions with Taurine vol.76, pp.7-8, 2013, https://doi.org/10.1007/s10337-012-2354-x
  4. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties vol.10, pp.1, 2017, https://doi.org/10.1186/s12284-017-0157-2
  5. Investigating the influence of taurine on thiol antioxidant status in Wistar rats with a multi-analytical approach vol.12, pp.2, 2014, https://doi.org/10.1016/j.jab.2013.01.002
  6. Taurine plays an important role in the protection of spermatogonia from oxidative stress vol.43, pp.6, 2012, https://doi.org/10.1007/s00726-012-1316-9
  7. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood vol.31, pp.3, 2016, https://doi.org/10.1002/tox.22045
  8. Metal interactions in mice under environmental stress vol.26, pp.4, 2013, https://doi.org/10.1007/s10534-013-9642-2
  9. Metabolomic study in plasma, liver and kidney of mice exposed to inorganic arsenic based on mass spectrometry vol.406, pp.5, 2014, https://doi.org/10.1007/s00216-013-7564-z
  10. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review vol.3, pp.12, 2012, https://doi.org/10.1039/c2fo30117b
  11. Analysis of the biological response of mouse liver (Mus musculus) exposed to As2O3 based on integrated -omics approaches vol.5, pp.12, 2013, https://doi.org/10.1039/c3mt00186e
  12. Effect of Taurine on Hemodiafiltration in Patients With Chronic Heart Failure vol.20, pp.1, 2016, https://doi.org/10.1111/1744-9987.12330
  13. Oxidative stress induced by cadmium in the plasma, erythrocytes and lymphocytes of rats vol.35, pp.4, 2016, https://doi.org/10.1177/0960327115591376
  14. Use of Metallomics and Metabolomics to Assess Metal Pollution in Doñana National Park (SW Spain) vol.48, pp.14, 2014, https://doi.org/10.1021/es4057938
  15. Application of metallomic and metabolomic approaches in exposure experiments on laboratory mice for environmental metal toxicity assessment vol.6, pp.2, 2014, https://doi.org/10.1039/c3mt00302g
  16. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice vol.192, pp.2, 2011, https://doi.org/10.1016/j.jhazmat.2011.05.100
  17. Taurine protects murine hepatocytes against oxidative stress-induced apoptosis by tert-butyl hydroperoxide via PI3K/Akt and mitochondrial-dependent pathways vol.131, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2011.09.057
  18. The effects of two common edible herbs, Ipomoea aquatica and Enhydra fluctuans, on cadmium-induced pathophysiology: a focus on oxidative defence and anti-apoptotic mechanism vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0598-6
  19. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. vol.23, pp.0, 2012, https://doi.org/10.3402/mehd.v23i0.14787
  20. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration vol.272, pp.3, 2013, https://doi.org/10.1016/j.taap.2013.07.016
  21. Tertiary butyl hydroperoxide induced oxidative damage in mice erythrocytes: Protection by taurine vol.19, pp.2, 2012, https://doi.org/10.1016/j.pathophys.2012.05.001
  22. Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine vol.25, pp.6, 2012, https://doi.org/10.1007/s10534-012-9582-2
  23. Metabolomic Analysis Reveals a Unique Urinary Pattern in Normozoospermic Infertile Men vol.13, pp.6, 2014, https://doi.org/10.1021/pr5003142
  24. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis vol.258, pp.2, 2012, https://doi.org/10.1016/j.taap.2011.11.009
  25. Myocardial oxidative stress following sub-chronic and chronic oral cadmium exposure in rats vol.32, pp.1, 2011, https://doi.org/10.1016/j.etap.2011.03.002
  26. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet vol.265, pp.3, 2012, https://doi.org/10.1016/j.taap.2012.09.009
  27. The synthesis and role of taurine in the Japanese eel testis vol.43, pp.2, 2012, https://doi.org/10.1007/s00726-011-1128-3
  28. Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats vol.51, 2013, https://doi.org/10.1016/j.fct.2012.10.007
  29. Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis vol.42, pp.5, 2012, https://doi.org/10.1007/s00726-011-0904-4
  30. Effects of Taurine Supplementation on Growth Performance and Antioxidative Capacity of Chinese Soft-shelled Turtles,Pelodiscus sinensis, Fed a Diet of Low Fish Meal Content vol.44, pp.6, 2013, https://doi.org/10.1111/jwas.12079
  31. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays vol.1019, 2016, https://doi.org/10.1016/j.jchromb.2015.11.020
  32. In vivo magnetic resonance approach to trimethyltin induced neurodegeneration in rats vol.1673, 2017, https://doi.org/10.1016/j.brainres.2017.07.012
  33. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats vol.43, pp.4, 2012, https://doi.org/10.1007/s00726-012-1225-y
  34. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis vol.87, pp.7, 2013, https://doi.org/10.1007/s00204-013-1034-4
  35. Ameliorative effects of taurine against diabetes: a review vol.50, pp.5, 2018, https://doi.org/10.1007/s00726-018-2544-4