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We consider a product recovery system that a single product is stocked in order to meet a demand from 
customers who may return products after usage. This paper addresses a problem of when to release a 
procurement process to replenish serviceable inventory and how many new products to procure. The structure of 
the optimal procurement policy is examined and numerically identified as a monotonic threshold curve. A 
numerical procedure is presented to jointly find the optimal procurement order size, optimal procurement policy, 
and optimal discounted profit. Sensitivity analysis also indicates that these optimal performance measurements 
have monotonic properties with respect to system parameters.
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1. Introduction

Environmental regulations and economic incentives 
motivate many companies to engage in product recov-
ery activities such as remanufacturing and recycling of 
materials. European nations have mandated laws for 
product take back after the product’s life ends, forcing 
companies to respond with creative solutions to the 
problem of product recovery (Mahadevan et al., 2003). 
Inventory management with product recovery differs 
from traditional inventory management situations in 
essentially two aspects. First, product returns represent 
an exogenous inbound material flow causing a loss of 

monotonicity of stock levels of serviceable products 
which serve customer demands. Second, two alterna-
tive supply sources are available for replenishing serv-
iceable inventory. One source is to procure externally 
or to produce internally while the other comes from re-
manufacturing activity.

This paper addresses a problem of when to release a 
procurement process to replenish serviceable inven-
tory and how many new products to procure. As a star-
ting point for the analysis, we restrict our attention to 
the case that a single product is stocked in order to 
meet a demand from customers who may return prod-
ucts after usage. The primary goal of this paper is to 
examine an optimal procurement policy that maximi-
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zes the company’s profit subject the system costs and, 
to present a numerical procedure which jointly finds 
the optimal procurement order size, optimal procure-
ment policy, and optimal discounted profit. 

We present the literature survey of product recovery 
models with procurement of new product according 
to the way of inventory review. Detailed literature 
surveys for product recovery models are found in 
Fleischmann et al. (1997), Mahadevan et al. (2003), 
and Savaskan et al. (2004). In product recovery mod-
els with periodic inventory review, research has been 
focused on deriving optimal control policies under va-
rious assumptions. Simpson (1978) considers the tra-
deoff between material savings due to reuse of old 
products versus additional inventory carrying costs 
and shows optimality of a three parameter policy to 
control replenishment order, recovery, and disposal 
when neither fixed costs nor lead times are considered. 
Inderfurth (1997) considers the effects of fixed and de-
terministic lead times for replenishment order and re-
covery without fixed costs. For identical lead times, he 
shows that the structure of the optimal policy is the 
same as Simpson (1978). Inderfurth (1997) also con-
siders the case of recovery not allowing storage of re-
coverable products. For identical lead times, a two pa-
rameter order-up-to and dispose-down-to policy is 
shown to be optimal. Mahadevan et al. (2003) study 
the issue of when to release returned products to the 
remanufacturing line and how many new products to 
manufacture, and develop heuristic policies for ap-
proximating optimal order-up-to level. Teunter and 
Vlachos (2002) deal with the issue of what the cost re-
duction associated with having a disposal option for 
returned item is. Fleischmann and Kuik (2003) study a 
product recovery model without disposal which con-
siders fixed cost as well as fixed lead time of replen-
ishment order and recovery but does not distinguish 
between new and returned products.

A parallel stream of research has evolved for con-
tinuous inventory review models. Heyman (1977) stu-
dies disposal policies for a model where demands and 
returns are independent stochastic processes, remanu-
facturing and procurement are instantaneous, and no 
fixed costs of remanufacturing and procurement are 
taken into account. When demands and returns follow 
Poisson process, he shows the optimality of single pa-
rameter disposal policy and derives an explicit ex-
pression for the optimal disposal level. Muckstadt and 
Isaac (1981) consider a similar model with explicit 

modeling of non-zero remanufacturing process. In 
contrast with Heyman (1977), disposal decisions are 
not treated, and demand and return processes are as-
sumed to be unit quantity following a Poission dis-
tribution. Van der Lann et al. (1996) present an alter-
native approximation for Muckstadt and Isaac (1981) 
and extend it with a disposal option under which the 
number of remanufacturable products is limited to a 
certain maximum level. Van der Lann et al. (1996) 
present a numerical comparison of several disposal 
policies and show that it is advantageous to base dis-
posal decisions on both the inventory level of re-
manufacturable products and an adequately defined to-
tal inventory.

Our model contributes to the related research in the 
following aspect. Unlikely the periodic inventory re-
view literature, continuous inventory review literature 
has been focused on optimizing system parameters 
given policies rather than exploited the issue of identi-
fying the optimal replenishment policy for serviceable 
inventory. In this paper, we investigate the optimal 
policy based upon future demand and product return 
processes and serviceable and remanufacturable inven-
tory processes. In particular, we address the issue of 
simultaneously determining the optimal replenishment 
policy and optimal order quantity.

This paper is organized as follows. Next section pre-
sents a formulation of the model. Then, section 3 ex-
amines the structure of the optimal procurement pol-
icy. In section 4, we provide a numerical example 
which graphically illustrates the optimal procurement 
policy. Section 5 describes a numerical procedure 
which jointly finds the optimal profit, optimal procure-
ment order size, and optimal procurement policy. In 
section 6, we give various numerical test results about 
the optimal performance. Last section states the con-
clusion.

2.  Problem Formulation

Demands for product occur randomly with rate  and 
are satisfied immediately from on-hand inventory of 
serviceable products. If they are not available, each ar-
riving demand is lost. The sales price of each service-
able product is . Product returns occur randomly 
with rate   and are accepted for remanufacturing. 
Remanufacturing time for transforming a returned pro-
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duct into a serviceable one is a random variable with 
mean    and the unit cost of remanufacturing is . 
It is further assumed that the unit cost of remanu-
facturing is the same for all remanufactured products 
and the quality of originally new product and rema-
nufactured one are the same. This assumption is usu-
ally made in most of product recovery models. Even 
though serviceable products are recovered from re-
turned products, the company replenishes serviceable 
inventory by purchasing new products of size  . It is 
assumed that procurement lead time takes a randomly 
distributed amount of time with mean   . Each pro-
curement order incurs a lump-sum cost  . Holding 
costs are assessed at rate   and   for each product in 
serviceable inventory and each returned product in re-
manufacturable inventory, respectively.

Respectively denote   and   the serviceable 
inventory level and the remanufacturable inventory 
level at time . We represent a state using the vector 
     where  is an indicator such that 
    implies a procurement order in process while 
    means no procurement order in process. The 
state space is denoted by    × × . At each 
epoch of a demand arrival, the company must decide 
whether or not it will purchase   new products to re-
plenish serviceable inventory. A control policy,  , 
specifies the action taken at any epoch of a demand ar-
rival given the current state of the system. Denote the 
initial state by    and the interest rate by . 
Then, the expected discounted profit given    
over an infinite horizon under   can be written as

            









∞

  
 



   

 
∈

  
∈

  
∈

 (1)

where , , and  respectively denote 
the set of random instances on  of demand sat-
isfaction, procurement order release, and remanufac-
turing completion under policy  .

  Then, the goal of this paper is to find an optimal 
control policy   which maximizes the following ex-
pected discounted profit over an infinite horizon :

     
   

 
    

(2)

Table 1. Summary of key notations

 Serviceable inventory level
 Remanufacturable inventory level
 Demand rate for serviceable products
 Remanufacturing rate
 Product return rate
 Procurement lead time rate
 Unit holding cost rate for serviceable inventory 
 Unit holding cost rate for remanufacturable inventory
 Unit sales price of serviceable product
 Procurement order setup cost
 Unit remanufacturing cost

3.  The Optimal Procurement Policy

This section is devoted to investigating the structure of 
an optimal procurement policy   Since it is not tract-
able to identify the optimal policy under general prob-
ability distribution, we assume that demand and prod-
uct return processes follow a Poisson process, and pro-
curement and remanufacturing processes are expon-
entially distributed. This assumption allows us to for-
mulate our model as a discrete time Markov decision 
problem. Even though the Markov model may be re-
stricted for modeling the real world problem, it can 
provide us with insights into the effective procurement 
management (Carr and Duenyas(2000)). 

Denote          if         
otherwise, and              if  
     otherwise. Operator   and   respectively 
correspond to a demand arrival and a remanufacturing 
process completion. Let         , that is,  
is the sum of all transition rates. Without loss of gen-
erality, assume that     . Then, from the theory 
of Markov decision processes(see chapter 6 in Puter-
man (2005)), we know that the optimal profit function 
    in (2) satisfies the following optimality 
equation : 

     
 



    

           
                 (3)
         
       
                 
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In (3),    means the expected revenue 
rate from sales when the serviceable inventory is not 
empty and    implies that the expected re-
manufacturing cost rate when the remanufacturable in-
ventory is not empty. The terms multiplied by   rep-
resent sales revenues and transitions generated with 
the arrival of demand, the terms multiplied by  imply 
penalties and transitions associated with a remanufac-
turing completion, the term multiplied by  repre-
sents transitions generated with the arrival of a product 
return, and the terms multiplied by  imply transitions 
associated with the arrival of   new products. 

Define the value iteration operator    by 

     
 



    

           
                (4)

          
       
                

Then, the optimality equation can be rewritten as 
(see Equation (6.2.8) in Puterman (2005))

          (5)

Next, consider the following value iteration (VI) al-
gorithm (see Bertsekas (1987) for the detail) to solve 
for (5) :

      
        ⋯  (6)

where           for every state    . 
Here       can be viewed as the optimal profit 
in state     when the problem is terminated af-
ter  iterations. Since  is a contraction mapping, it is 
well known that      converges to    
 as  goes to the infinite.

To implement a marginal value analysis on the opti-
mal profit function , we define the following oper-
ators   and   on  :

           
           
         

     and      respectively im-
ply the marginal profit attained when there is one more 
unit in serviceable inventory and one more unit in re-

manufacturable inventory.      means the 
marginal profit expected when there is a procurement 
order in process.

Numerical investigation suggests that the optimal 
profit function  has the following set of the func-
tional properties :

(i)     ≥      
(ii)     ≥    
(iii)       ≥       

Property (i) ((ii)) says that the incremental profit of 
holding one more serviceable (remanufacturable) is 
larger when a procurement order is not in process than 
when it is. Property (iii) states that relative to a certain 
state, the marginal profit expected from having a pro-
curement order in process is larger when there is one 
more unit of remanufacturable inventory than when 
there is one more unit of serviceable inventory.  

From the above observations, it is conjectured that 
the optimal procurement policy may be established by 
the following monotonic threshold structure under the 
general probability distributions :

(S1) If the company purchases   units of new prod-
uct in state       , then it also does in 
state      (from observation (i)).

(S2) If the company purchases   units of new prod-
uct in state      , then it also does in 
state      (from observation (ii)).

(S3) If the company purchases   units of new prod-
uct in state      , then it also does in 
state        (from observation (iii)).

The following theorem states that when serviceable 
inventory becomes sufficiently large, then the com-
pany should not purchase new products, which is an 
intuitive result.

Theorem 1
lim
→∞

    lim
→∞

        (7)

Proof : See the Appendix.

The following theorem shows that the profit func-
tion under the optimal policy is asymptotically linear. 
These results are used in truncating the state space 
when the value iteration method finds the optimal 
policy.
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Theorem 2

(i) lim
→∞

   

        (8)

(ii) lim
→∞

   

        (9)

Proof : See the Appendix.
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   Figure 1. Graphical illustration of the optimal 
policy

The intuition for Theorem 2 is as follows. Suppose 
that there is a very large inventory of serviceable 
product. Having one more unit of serviceable product 
incurs an additional cost   over the time until ex-
cessive inventory has been used. In the limit, the net 

present value of this additional cost becomes  


∞

    . The same argument can be applied 
to (9).

4.  A Numerical Example for an 
Optimal Procurement Policy

We present an example to illustrate the results ob-
tained in the previous section. Arrivals for demand and 
product return are Poisson distribution with rates 
    and    , respectively. Remanufacturing 
and procurement lead times are exponential with rate 
    and    , respectively. Holding cost rates are 
    and     for each unit of serviceable and 
remanufacturable inventory, respectively. Sales price 

of a serviceable product is    . Procurement cost 
of   new products is    . Procurement order 
size is   . The unit cost of remanufacturing is 
   . The discount factor is set to  . 

The optimal procurement policy in state      
is graphically represents in <Figure 1>. It is charac-
terized by a monotonic threshold curve,  , which 
is decreasing in  .   separates the state space 
     into two regions : 1) Purchase   new pro-
ducts and 2) Do not purchase. In this example, if a de-
mand occurs in state     , the company should 
purchase   new products. If a demand occurs in state 
    , a procurement order should not be trigg-
ered.

If the system starts within Region  , we note that 
the state      cannot move down across the 
boundary of  . To see this, suppose that the sys-
tem starts in state      where there are following 
three possible transitions : i)  decreases by one and 
  increases by one corresponding to a remanufactur-
ing completion, ii)   increases by one corresponding 
to a remanufacturing completion, and iii)   decreases 
by one corresponding to a demand and places a pro-
curement order which transits the current state    
 into    . All the transition makes the system 
not move down across the boundary of  .

5.  Numerical Procedure for Jointly 
Finding Optimal Profit, Optimal 
Procurement Order Size, and 
Optimal Procurement Policy

In the following, we present a numerical procedure 
which jointly finds the optimal procurement order size, 
  and the optimal profit function, , and the optimal 
procurement curve,  , given   Even though the 
procedure relies on one dimensional search to find   
our numerical investigation implemented with a varie-
ty of test examples suggests that  is a concave func-
tion of  . <Figure 2> exhibits    as a function 
of   for the example used in the previous section. It is 
observed that    is concave in   and  . 
Based on our numerical study, it is conjectured that 
concavity (convexity) of the order size on the profit 
(cost) function, well established in the literature of in-
ventory management without product returns, may al-
so hold for product recovery system.
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Figure 2. Optimal profit     as a function of 

To guarantee that one dimensional search finds   , 
we show that there exists the following upper bound 
on ：

Theorem 3 : To maximize (3) which is a function of 
 , the purchasing order size   must be 
less than      ,  regardless of 
the serviceable inventory level.

Proof : It can be shown using an argument similar to 
the one used in the proof of Lemma 3.1 in 
He et al. (2002). 

The following procedure, combining value iteration 
and one dimensional search, jointly finds the optimal 
profit, optimal purchasing order size and optimal pur-
chasing policy. 

Optimal solution procedure :
Denote by      be the optimal profit in 

state     when the problem is terminated after 
 iterations, given  . Let   be the termination crite-
rion of VI.

1. Start with   
2. Implementation of Value Iteration subroutine
(a) Initialization : Set    , and for each state  
  , pick the value function         .

(b) Value iteration step : Implement a VI on the cur-
rent value function estimate   : For the detail of 
implementing the value iteration algorithm, see 
Section 5.2 of Bertsekas(1987).


      

 



    

          
                
 

           (10)
              
        

(c) Termination test : Perform the following conver-
gence test :

        ∈
 

 
  (11)

   ∈
 

 
 . (12)

If   ≥  for every state     , let

       

           (13)

increase  by one, and go to Value iteration step. 
otherwise, go to Evaluation step.

(d) Optimal order quantity and Optimal policy eval-
uation step : Let the optimal discounted profit 
given   be 

      
     .

Using one dimensional search, find    that 
maximizes   for  ≤ ≤   where 

       . Let     
   

      
      and 

stop the procedure.

6. A Sensitivity Analysis

In this section, we investigate (1) what is the effects of 
cost parameters on the optimal profit and procurement 
order size? and (2) What is the effects of mean time 
parameters on the optimal profit and procurement or-
der size? First, in the following theorems, we show 
how the optimal discounted profit changes as a func-
tion of system parameters, which is intuitive.

Theorem 4 : The optimal discounted profit function 
 decreases in  , , , and   and 
increases in .

Proof : If a new system has ′  , one can couple 
the new system to the original by applying 
the policy  that was optimal for the origi-
nal system to the new one as well. Along ev-
ery sample path, the cost of the new system 
is not increased under  therefore an opti-
mal policy for the new system will perform 
at least as well. The same argument is ap-
plied to the costs other than  . 
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Theorem 5 : The increase in demand rate result in 
an equal or larger expected profit. 

Proof : We apply an argument similar to the one 
used in the proof of Theorem 2 in Carr and 
Duenyas (2000). Suppose that in the new 
system, demand rate is increased from  to 
′, ceteris paribus. Consider a policy ′ for 
the new system which works as follows. 
Whenever a demand arrives at the system, it 
is rejected with probability ′ ′  and 
the sequence of procurement order is done 
using the optimal policy for the original 
system. Under ′, the new system has the 
same sample path as the original system and 
thus achieves the same expected discounted 
profit as the original system. Because ′ 
may not necessary be optimal for the new 
system, the optimal policy in the new sys-
tem will perform at least as well ′.

Next, we numerically implemented a sensitivity 
analysis. To this end, we have investigated the follow-
ing scenarios using the standard parameter settings in 
<Table 2> : 

•Scenario 1 : Vary procurement setup cost  , ce-
teris paribus 

•Scenario 2 : Vary serviceable inventory holding 
cost  , ceteris paribus

•Scenario 3 : Vary unit sales price , ceteris par-
ibus 

•Scenario 4 : Vary demand rate  , ceteris paribus 
•Scenario 5 : Vary return rate  , ceteris paribus
•Scenario 6 : Vary remanufacturing rate , ceteris 

paribus
•Scenario 7 : Vary lead time rate , ceteris paribus

Besides the reference example in <Table 2>, we ex-
tensively tested more than 100 examples with varying 
the values of system parameters and observed that test 
results with those examples are very similar to the 
ones obtained using the reference example. For this 
reason, we only report the observations and insights 
that are derived by the reference example.

Table 2. Reference example used in the numerical test

         Discount factor

1 1 0.2 0.2 1 0.2 100 400 5 0.99   

6.1 Effects of Cost Parameters on the Optimal 
Profit And Procurement Order Size

Based on the computational experiment, we observe 
the following monotonicity of the optimal procure-
ment order size    with respect to cost parameters :

• is increasing as the fixed cost of procurement, 
 , increases (see <Figure 3>).

• is decreasing as the serviceable inventory cost, 
 , increases (see <Figure 4>).

• is decreasing as the sales price, , increases 
(see <Figure 5>).

The first and second phenomenon can be explained 
using the reasoning of the economic order quantity 
(EOQ) model. In EOQ model, it can be easily seen 
that the optimal order size decreases in inventory hold-
ing cost and increases in order setup cost. The third 
observation indicates that a thorough study of the opti-
mal selection of    is needed for our model, which 
focuses on how best to use procurement order and 
remanufacturing. We believe that these monotonicity 
properties will be very useful in developing a heuristic 
formula which approximates  

We would like to note that the unit remanufacturing 
cost, , and remanufacturable inventory holding cost, 
 , do not affect    since the remanufacturing proc-
ess in our model is not a controllable variable. In con-
trast, if it is controlled, it is obvious that    also de-
pends on these cost parameters.
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Figure 7. Optimal order size as a function of 
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Figure 5. Optimal order size as a function of 

6.2 Effects of Mean Time Parameters on the 
Optimal Profit and Procurement Order Size

From the computational experiment, we also observe 
the following monotonic properties of    and   with 
respect to time distribution parameters :

•   is increasing as the demand rate   increases 
(see <Figure 6>).

•   is decreasing as the return rate  increases 
(see <Figure 7>).

• is concave with respect to the remanufacturing 
rate  (see <Figure 8>).

• is concave with respect to the procurement lead 
time rate  (see <Figure 9>).

Figure 6. Optimal order size as a function of 

If demand rate increases while other conditions re-
main the same, the chance of enhancing sales revenue 
also increases. Hence, the firm will increase the pro-
curement order size to raise the inventory level of 
serviceable product. To explain the second observa-
tion, suppose that product return rate increases, ceteris 
paribus. Increased returned products results in increa-
sed inventory level of remanufacturable product which 
will be converted into serviceable inventory through 
remanufacturing. Then, it is reasonable to expect that 
the firm will try to balance the inventory level between 

serviceable and remanufacturable products and thus to 
reduce the procurement order size.

The third observation indicates that there exits an 
optimal remanufacturing rate that maximizes the com-
pany’s profit. The intuition behind this is as follows. 
The increase in the remanufacturing rate will more 
rapidly convert remanufacturable inventory into serv-
iceable inventory. This causes the company to pay 
more serviceable inventory costs than before, since 
other conditions remain the same. In contrast, if the re-
manufacturing rate becomes decreasing, the delay in 
the remanufacturing process results in keeping re-
manufacturable inventory for a longer time than be-
fore. Hence, larger remanufacturable holding costs than 
before will shrink the company’s profit.

Figure 8. Optimal profit     as a functional 

Similarly, the fourth observation indicates that there 
exits an optimal procurement lead time rate that max-
imizes the company’s profit. The intuition behind this 
is as follows. Numerical test demonstrates that both 
optimal procurement policy and optimal order size are 
little affected by the change in the procurement lead 
time rate. It comes from the fact that serviceable in-
ventory can be replenished through remanufacturing 
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 Figure 9. Optimal profit      as a function 
of 

process as well as procurement process. Hence, when 
procurement lead time is too short while other con-
ditions remain the same, a procurement action will pile 
up serviceable inventory immediately, which causes 
the company to pay more inventory holding costs. In 
contrast, if procurement lead time is too long while 
other conditions remain the same, the possibility of 
stockout will be increased and the lost of sales oppor-
tunities will be also increased.

7. Conclusion

In this paper we considered a product recovery system 
with a continuous inventory review and studied the is-
sue of when to release a procurement order to replen-
ish serviceable inventory and how many new products 
to procure. The aim of this paper was to help us to 
gain insights into the nature of problems with product 
recovery. We examined the structure of the optimal 
procurement policy, which has not been treated in the 
literature. In particular, we examined the policy that is 
derived based on the inventory level of both service-
able and remanufacturable products.

By modeling our problem as the Markov decision 
process and using value iteration, we numerically cha-
racterized the structure of an optimal procurement pol-
icy as a monotonic threshold function. It was shown 
that a procurement decision is allowed only when 
serviceable inventory level drops down below a pro-
curement curve. This curve is the function of the re-
manufacturable inventory level and is decreasing as it 
increases. We also implemented a sensitivity analysis 
and observed many meaningful monotonic properties 
of the optimal order size and the optimal discounted 
profit with respect to system parameters.

The insights obtained in this paper will be very use-
ful for studying more realistic models with arbitrary 
probability distributions other than exponential ones. 
One of the major extensions to the current model is to 
include a disposal option of returned product, since it 
becomes a more effective strategy in handling both re-
manufacturable and serviceable inventories. The other 
direction of the future research is to control the re-
manufacturing process and decide when to start and 
when to end remanufacturing of returned products.

Appendix

Proof of Theorem 1 : From the definition of value 
iteration operator T,

lim
→∞

    lim
→∞

   

  

  lim

→∞
    

       lim
→∞

      



 

 lim
→∞

        

       lim
→∞

       



 

 lim
→∞

      lim
→∞

    



  

 lim
→∞

     lim
→∞

    



    
   (since   by assumption and 

Proof of Theorem 2 :
(i) by (7), the optimal action in state      

when   goes to the infinite is do not purchase. 
In addition, by (8), lim

→∞
      

lim
→∞

      lim
→∞

      , 

and lim
→∞

    exist and finite. Hence, 

lim
→∞

  

     lim
→∞

    

  lim
→∞

        

  lim
→∞

        lim
→∞

  

    


 


 


 



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    


        

 


  




      

(ii) The arguments similar to providing (i) can be ap-
plied here and we omit the detailed proof.
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