Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection

잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구

  • 장진원 (포스코건설 토목환경사업본부 토목지원그룹) ;
  • 김승준 (고려대학교 건축사회환경공학과) ;
  • 박종섭 (상명대학교 토목환경공학부) ;
  • 강영종 (고려대학교 건축사회환경공학과)
  • Received : 2008.01.09
  • Accepted : 2008.05.13
  • Published : 2008.06.10

Abstract

This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

본 논문에서는 잔류응력과 초기변형을 고려한 비선형 해석을 실시하여 송전철탑의 극한거동을 분석하였다. 송전철탑 전체 해석 모델링에 주주재, 수평재 및 1차 사재는 보(Beam)요소를 사용하였고, 기타 사재 및 보조재는 트러스(Truss)요소를 사용하였으며 구조해석프로그램 ABAQUS(2004)를 사용하였다. ABAQUS Imperfection 옵션 및 Initial condition 옵션을 사용한 초기변형 및 잔류응력 적용의 적절성을 평가하고자 판(Plate & Shell)요소 부재모델과 보요소 부재모델의 해석결과를 비교분석하였다. 보요소와 트러스 요소를 적용한 송전철탑 전체모델의 비선형 해석결과 ${P-{\triangle}}$효과로 인하여 철탑 하부 각재부 주요 부재에 좌굴파괴가 발생하였다. 본 연구에서는 구조물의 안전성에 영향을 미치는 비선형 해석인자 즉 잔류응력과 초기변형의 정도에 따른 안전성 저하값을 정량적으로 평가하여 제시하고 있다. 그러므로, 본 연구의 결과는 실제 송전철탑의 파괴극한거동에 가까운 설계법, 해석법 및 시공법 정립에 크게 기여할 것으로 판단된다.

Keywords

References

  1. 김우범, 이경진, 서용표, 나환선, 박동수(1998), 765kV 송전철탑 하중시험과 접합부 거동해석에 관한 연구, 대한건축학회논문집, 14권 3호 통권 113호 pp. 277-286
  2. 일본전기학회(1965), 송전용철탑설계표준, Tokyo
  3. 일본전기학회(1979), 송전용지지물설계기준, JEC-127, Tokyo
  4. 장진원, 김승준, 박종섭, 강영종(2007), 송전철탑 설계기준을 반영한 345kV급 송전철탑의 합리적인 구조해석모델 제안, 한국강구조학회논문집, 제 19권 4호, 통권 89호 pp. 367-382
  5. 한국전력공사(2004), 가공송전용 철탑설계기준-1111
  6. ABAQUS Standard User's Manual, (2004), Hibbitt, Karlsson and Sorensen, Inc., Vols 1,2 and 3. Version 6.5
  7. American Society of Civil Engineers(ASCE) (2000), Design of Latticed Steel Transmission Structures, Virginia
  8. American Society of Civil Engineers(ASCE) (1988), Manuals and Reports on Engineering Practice No. 52, Guide for Design of Steel Transmission Towers, 2nd edition., Virginia
  9. American Society of Civil Engineers(ASCE) (2006), Bracing Cold-formed Steel Structures : A Design Guide, Virginia
  10. British Standards Institution(BSI) (1989), Lattice Towers and Masts, London
  11. Ehab Ellobody, Ben Young(2005), Behavior of Cold-Formed Steel Plain Angle Columns, Journal of Structural Engineering, Vol. 131 No. 3, pp. 457-466 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(457)
  12. European Convention for Constructional Steelwork(ECCS) (1985), Recommendations for Angles in Lattice Transmission Towers, ECCS-Technical Committee 8-Structural Stability, 1st edn., No. 39, Brussels, Belgium
  13. S.M.R. Adluri, M.K.S. Madugula(1996), Flexural buckling of steel angles : Experimental investigation, Journal of Structural Engineering, Vol. 122, No. 3, pp. 309-317 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(309)
  14. F.G.A. Al-Bermani, S. Kitipornchai(1993), Nonlinear finite element analysis of latticed transmission towers, Journal of Structural Engineering, Vol. 15, pp. 259-269 https://doi.org/10.1016/0141-0296(93)90029-4
  15. F.G.A. Al-Bermani, S. Kitipornchai(2003), Numerical Simulation of Structural Behaviour of Transmission Towers, Journal of Thin-walled Structures, Vol. 41, pp. 167-177 https://doi.org/10.1016/S0263-8231(02)00085-X
  16. R. Richard Avent, David J. Mukai, Paul F. Robinson (2001), Residual Stresses in Heat-straightened Steel Members, Journal of Materials in Civil Engineering, Vol. 13, No. 1, pp. 18-25 https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(18)
  17. N. Prasad Rao, V. Kalyanaraman(2001), Non-linear behaviour of lattice panel of angle towers, Journal of Constructional Steel Research, Vol. 57, pp. 1337-1357 https://doi.org/10.1016/S0143-974X(01)00054-2
  18. da Silva JGS, da S. Vellasco PCG, de Andrade SAL, de Oliveira MIR(2005), Structural assessment of current steel design models for transmission and telecommuication towers, Journal of Constructional Steel Research, Vol. 61, pp. 1108-1134 https://doi.org/10.1016/j.jcsr.2005.02.009