Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes

입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링

  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Heung Soo (Department of Environmental Engineering, Chungbuk National University) ;
  • Jung, Yong Rak (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2008.04.07
  • Accepted : 2008.05.15
  • Published : 2008.05.30

Abstract

Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. 국가수자원관리종합정보시스템(2004). http://www.wamis.go.kr
  2. 신재기, 허진, 이흥수, 박재충, 황순진(2006). 표층수를 방류 하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석. 한국물환경학회지, 22(5), pp. 933-942
  3. 유순주, 김창수, 하성룡, 황종연, 채민희(2005). 금강 수계 자 연유기물 특성 분석. 한국물환경학회지, 21(2), pp. 125-131
  4. 이상욱, 김정곤, 노준우, 고익환(2007). CE-QUAL-W2 모델을 이용한 임하호 선택배제시설의 효과분석. 한국물환경학회지, 23(2), pp. 228-235
  5. 정세웅(2004). 성층화된 저수지로 유입하는 탁류의 공간분 포 특성 및 연직 2차원 모델링. 대한환경공학회지, 26(9), pp. 970-978
  6. 정세웅, 오정국(2006). 대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발. 한국수자원학회논문집, 39(1), pp. 79-88 https://doi.org/10.3741/JKWRA.2006.39.1.079
  7. 정세웅, 오정국, 고익환(2005). CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의. 한국수자원학회논문집, 38(8), pp. 655-664 https://doi.org/10.3741/JKWRA.2005.38.8.655
  8. 정세웅, 이흥수, 윤성완, 예령, 이준호, 추창오(2007). 홍수시 대청호 유역에 발생하는 탁수의 물리적 특성. 한국물환경학회지, 23(6), pp. 924-934
  9. 한국수자원공사(2000). 댐 저수지 탁류 및 오염물질 이송.확 산 모의기술 개발
  10. 한국수자원공사(2004). 임하댐 탁수저감 방안 수립 보고서
  11. Alavian, V., Jirka, G. H., Denton, R. A., Johnson, M. C. and Stefan, H. G. (1992). Density currents entering lakes and reservoirs. J. Hydr. Eng., 118, pp. 1464-1489 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1464)
  12. APHA, AWWA, and WEF (1998). Standard Methods for the Examination of Water and Wastewater. 20th ed., American Public Health Association, Washington, DC., USA
  13. Camenen, B. (2007). Simple and general formula for the settling velocity of particles. J. Hydr. Eng., 133(2), pp. 229-233 https://doi.org/10.1061/(ASCE)0733-9429(2007)133:2(229)
  14. Casamitjana, X. and Schladow, G. (1993). Vertical distribution of particles in stratified lake. J. Hydr. Eng., 119(3), pp. 443-461
  15. Chikita, K. and Okumura, Y. (1990). Dynamics of turbidity currents measured in Katsurazawa reservoir. Hokkaido, Japan. J. Hydrol., 117, pp. 323-338 https://doi.org/10.1016/0022-1694(90)90099-J
  16. Choi, S. U. and Garcia, M. (2002). ${\kappa}-{\varepsilon}$ turbulence modeling of density currents developing two dimensionally on a slope. J. Hydr. Eng., 128(1), pp. 55-63 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(55)
  17. Chung, S. W. and Gu, R. (1998). Two-dimensional simulations of contaminant currents in stratified reservoir. J. Hydr. Eng., 124(7), pp. 704-711 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(704)
  18. Chung, S. W., Oh, J. K., and Ko, I. H. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in monsoon climate area. Water Sci. & Tech., 54(12), pp. 29-37
  19. Cole, T. M. and Wells, S. A. (2004). CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model. Version 3.2 User Manual, Instruction Report EL-03-1, U.S. Army Corps of Engineers. USA
  20. Davies-Colley, R. J. and Smith, D. G. (2001). Turbidity, suspended sediment, and water clarity: a review. J. Am. Water Resour. Assoc., 37(5), pp. 1085-1101 https://doi.org/10.1111/j.1752-1688.2001.tb03624.x
  21. Farrell, G. J. and Stefan, H. G. (1988). Mathematical modeling of plunging reservoir flows. J. Hydr. Res., 26(5), pp. 525- 537 https://doi.org/10.1080/00221688809499191
  22. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H. (1979). Mixing in Inland and Coastal Waters, Academic Press, New York
  23. Gelda, R. K. and Effler, S. W. (2007). Modeling turbidity in a water supply reservoir: Advancements and issues. J. Environ. Eng., 133(2), pp. 139-148 https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(139)
  24. Gelda, R. K. and Steven, W. E. (2007). Simulation of Operations and Water Quality Performance of Reservoir Multilevel Intake Configurations. J. of Water Resources Planning and Management, ASCE, 133(1), pp. 78-86 https://doi.org/10.1061/(ASCE)0733-9496(2007)133:1(78)
  25. Gibbs, R. J. (1985). Settling velocity, diameter, and density for flocs of illite, kaolinite, and montmorillonite. J. of Sedimentary Petrology, 55(1), pp. 65-68
  26. Gippel, C. J. (1995). Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrol. Process., 9, pp. 83-97 https://doi.org/10.1002/hyp.3360090108
  27. Henley, W. F., Patterson, M. A., Neves, R. J. and Lemly, A. Dennis (2000). Effects of sedimentation and turbidity on lotic food webs: A concise review for natural resource managers. Reviews in Fisheries Science, 8(2), pp. 125-139 https://doi.org/10.1080/10641260091129198
  28. Imberger, J. (1989). Vertical heat flux in the hypolimnion of a lake. Proc. Tenth Australasian Fluid Mechanics Conference, Melbourne, Australia, December 1989, I, 2.13-2.16
  29. Imberger, J. and Patterson, J. C. (1990). Physical Limnology. Advances in Applied Mechanics, T. Wu (ed.), Academic Press, Boston, 27, pp. 302-475
  30. Lewis, J. (1996). Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research, 32(7), pp. 2299-2310 https://doi.org/10.1029/96WR00991
  31. Manning, A. J. and Dyer, K. R. (1999). A laboratory examination of flock characteristics with regard to turbulent shearing. Mar. Geol., 160, pp. 147-170 https://doi.org/10.1016/S0025-3227(99)00013-4
  32. Martin, J. L. and McCutcheon, S. C. (1999). Hydrodynamics and Transport for Water Quality Modeling. CRC Press, Inc., pp. 335-384
  33. Olsen, N. and Skoglund, M. (1994). Three-dimensional numerical modeling of water and sediment flow in a sand trap. J. Hydro. Res., 32(6), pp. 833-844 https://doi.org/10.1080/00221689409498693
  34. O'Melia, C. R. (1980). Aquasols: the behavior of small particles in aquatic systems. Environ. Sci. Technol., 14, pp. 1052-1060 https://doi.org/10.1021/es60169a601
  35. Pedocchi, F., and Garcia, M. H. (2006). Evaluation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements. Continental Shelf Research, 26, pp. 943-958 https://doi.org/10.1016/j.csr.2006.03.006
  36. Romero, J., Jellison, R. and Melack, J. M. (1998). Stratification, vertical mixing, and upward ammonium flux in hypersaline Mono Lake, California. Arch. Hydrobiol., 142, pp. 283-315 https://doi.org/10.1127/archiv-hydrobiol/142/1998/283
  37. Sullivan, A. B., Rounds, S. A., Sobieszczyk, S., and Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon. U.S. Geological Survey Scientific Investigations Report 2007-5008, VA, USA
  38. Umeda, M., Yokoyama, K. and Ishikawa, T. (2006). Observation and simulation of floodwater intrusion and sedimentation in the Shichikashuku Reservoir. Journal of Hydraulic Engineering, 132(9), pp. 881-891 https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(881)
  39. Wetzel, R. G. (2001). Limnology, Lake and reservoir ecosystems. Academic Press, New York