DOI QR코드

DOI QR Code

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna (Department of Neurological Surgery, University of Wisconsin) ;
  • Hatcher, J.F. (Department of Neurological Surgery, University of Wisconsin)
  • Published : 2008.08.31

Abstract

The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

Keywords

References

  1. Adibhatla, R. M. and Hatcher, J. F. (2007) Role of lipids in brain injury and diseases. Future Lipidol. 2, 403-422. https://doi.org/10.2217/17460875.2.4.403
  2. Adibhatla, R. M. and Hatcher, J. F. (2008, in press) Altered lipid metabolism in brain injury and disorders, in Lipids in Health and Disease, (Quinn P. J. and Wang X., eds), Subcellular Biochemistry Vol. 49. Springer-Verlag, New York.
  3. Adibhatla, R. M. and Hatcher, J. F. (2008) An odyssey of plaque to stroke: a lipid perspective. www.athero.org.
  4. Wymann, M. P. and Schneiter, R. (2008) Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162-176 . https://doi.org/10.1038/nrm2335
  5. Adibhatla, R. M. and Hatcher, J. F. (2006) Phospholipase $A_2$, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376-387 . https://doi.org/10.1016/j.freeradbiomed.2005.08.044
  6. Farooqui, A. A., Ong, W.-Y. and Horrocks, L. A. (2006) Inhibitors of brain phospholipase $A_2$ activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58, 591-620 . https://doi.org/10.1124/pr.58.3.7
  7. Tucker, D. E., Gijon, M. A., Spencer, D. M., Qiu, Z.-H., Gelb, M. H. and Leslie, C. C. (2008) Regulation of cytosolic phospholipase $A_2a$ by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. J. Leukocyte Biol. In Press, doi:10.1189/jlb.0308197.
  8. Green, J. T., Orr, S. K. and Bazinet, R. P. (2008) The emerging role of group VI calcium-independent phospholipase $A_2$ in releasing docosahexaenoic acid from brain phospholipids. J. Lipid Res. 49, 939-944. https://doi.org/10.1194/jlr.R700017-JLR200
  9. Balboa, M. A., Perez, R. and Balsinde, J. (2008) Calcium-independent phospholipase $A_2$ mediates proliferation of human promonocytic U937 cells. FEBS J. 275, 1915-1924 . https://doi.org/10.1111/j.1742-4658.2008.06350.x
  10. Adibhatla, R. M. and Hatcher, J. F. (2008) Integration of cytokine biology and lipid metabolism in stroke. Front. Biosci. 13, 1250-1270. https://doi.org/10.2741/2759
  11. Sun, G. Y., Xu, J., Jensen, M. D. and Simonyi, A. (2004) Phospholipase $A_2$ in the central nervous system: Implications for neurodegenerative diseases. J. Lipid Res. 45, 205-213. https://doi.org/10.1194/jlr.R300016-JLR200
  12. Windelborn, J. A. and Lipton, P. (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J. Neurochem. 106, 56-69. https://doi.org/10.1111/j.1471-4159.2008.05349.x
  13. Adibhatla, R. M., Hatcher, J. F., Larsen, E. C., Chen, X., Sun, D. and Tsao, F. (2006) CDP-choline significantly restores the phosphatidylcholine levels by differentially affecting phospholipase $A_2$ and CTP-phosphocholine cytidylyltransferase after stroke. J. Biol. Chem. 281, 6718-6725. https://doi.org/10.1074/jbc.M512112200
  14. Lin, T.-N., Wang, Q., Simonyi, A., Chen, J.-J., Cheung, W.-M., Y. He, Y., Xu, J., Sun, A. Y., Hsu, C. Y. and Sun, G. Y. (2004) Induction of secretory phospholipase $A_2$ in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J. Neurochem. 90, 637-645. https://doi.org/10.1111/j.1471-4159.2004.02540.x
  15. Shelat, P. B., Chalimoniuk, M., Wang, J.-H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., Simonyi, A. and Sun, G. Y. (2008) Amyloid $\beta$ peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase $A_2$ in cortical neurons. J. Neurochem. 106, 45-55. https://doi.org/10.1111/j.1471-4159.2008.05347.x
  16. Zhu, D., Lai, Y., Shelat, P. B., Hu, C., Sun, G. Y. and Lee, J. C. M. (2006) Phospholipases $A_2$ mediate Amyloid-$\beta$ peptide-induced mitochondrial dysfunction. J. Neurosci. 26, 11111-11119. https://doi.org/10.1523/JNEUROSCI.3505-06.2006
  17. Rosenberger, T. A., Villacreses, N. E., Contreras, M. A., Bonventre, J. V. and Rapoport, S. I. (2003) Brain lipid metabolism in the $cPLA_2$ knockout mouse. J. Lipid Res. 44, 109-117. https://doi.org/10.1194/jlr.M200298-JLR200
  18. Adibhatla, R. M., Hatcher, J. F. and Dempsey, R. J. (2003) Phospholipase $A_2$, hydroxyl radicals and lipid peroxidation in transient cerebral ischemia. Antioxid. Redox. Signal. 5, 647-654 . https://doi.org/10.1089/152308603770310329
  19. Fuentes, L., Hernandez, M., Nieto, M. L. and Crespo, M. S. (2002) Biological effects of group IIA secreted phosholipase $A_2$. FEBS Lett. 531, 7-11.
  20. Gilroy, D. W., Newson, J., Sawmynaden, P., Willoughby, D. A. and Croxtall, J. D. (2004) A novel role for phospholipase $A_2$ isoforms in the checkpoint control of acute inflammation. FASEB J. 18, 489-498. https://doi.org/10.1096/fj.03-0837com
  21. Ginsberg, M. D. (2008) Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology In Press, doi:10.1016/j.neuropharm.2007.1012.1007.
  22. Liu, N.-K., Zhang, Y. P., Titsworth, W. L., Jiang, X. R., Han, S. K., Lu, P.-H., Shields, C. B. and Xu, X.-M. (2006) A novel role of phospholipase $A_2$ in mediating spinal cord secondary injury. Ann. Neurol. 59, 606-619. https://doi.org/10.1002/ana.20798
  23. Moses, G. S., Jensen, M. D., Lue, L. F., Walker, D. G., Sun, A. Y., Simonyi, A. and Sun, G. Y. (2006) Secretory PL$A_2$-IIA: A new inflammatory factor for Alzheimer's disease. J. Neuroinflammation 3, doi:10.1186/1742-2094-1183-1128.
  24. Sun, G. Y., Horrocks, L. A. and Farooqui, A. A. (2007) The roles of NADPH oxidase and phospholipases $A_2$ in oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103, 1-16. https://doi.org/10.1111/j.1471-4159.2007.05003.x
  25. Kalyvas, A. and David, S. (2004) Cytosolic phospholipase $A_2$ plays a key role in the pathogenesis of multiple sclerosis- like disease. Neuron 41, 323-335. https://doi.org/10.1016/S0896-6273(04)00003-0
  26. Marusic, S., Leach, M. W., Pelker, J. W., Azoitei, M. L., Uozumi, N., Cui, J., Shen, M. W. H., DeClercq, C. M., Miyashiro, J. S., Carito, B. A., Thakker, P., Simmons, D. L., Leonard, J. P., Shimizu, T. and Clark, J. D. (2005) Cytosolic phospholipase $A_2$${\alpha}$-deficient mice are resistant to experimental autoimmune encephalomyelitis. J. Exp. Med. 202, 841-851. https://doi.org/10.1084/jem.20050665
  27. Kronke, M. and Adam-Klages, S. (2002) Role of caspases in TNF-mediated regulation of $cPLA_2$. FEBS Lett. 531, 18-22. https://doi.org/10.1016/S0014-5793(02)03407-5
  28. Cunningham, T. J., Yao, L., Oetinger, M., Cort, L., Blankenhorn, E. P. and Greensteinm, J. I. (2006) Secreted phospholipase $A_2$ activity in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Neuroinflammation 3, doi: 10.1186/1742-2094-1183-1126.
  29. Simmons, D. L., Botting, R. M. and Hla, T. (2004) Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387-437. https://doi.org/10.1124/pr.56.3.3
  30. Phillis, J. W., Horrocks, L. A. and Farooqui, A. A. (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52, 201-243. https://doi.org/10.1016/j.brainresrev.2006.02.002
  31. Kirkland, R. A., Adibhatla, R. M., Hatcher, J. F. and Franklin, J. L. (2002) Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115, 587-602. https://doi.org/10.1016/S0306-4522(02)00512-2
  32. Jiang, J., Borisenko, G. G., Osipov, A., Martin, I., Chen, R., Shvedova, A. A., Sorokin, A., Tyurina, Y. Y., Potapovich, A., Tyurin, V. A., Graham, S. H. and Kagan, V. E. (2004) Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase- 2-transfected PC12 cells. J. Neurochem. 90, 1036-1049. https://doi.org/10.1111/j.1471-4159.2004.02577.x
  33. Kunz, A., Anrather, J., Zhou, P., Orio, M. and Iadecola, C. (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J. Cereb. Blood Flow Metab. 27, 545-551. https://doi.org/10.1038/sj.jcbfm.9600369
  34. Dringen, R. (2000) Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649-671. https://doi.org/10.1016/S0301-0082(99)00060-X
  35. Taylor, J. M. and Crack, P. J. (2004) Impact of oxidative stress on neuronal survival. Clin. Exp. Pharmacol. Physiol. 31, 397-406. https://doi.org/10.1111/j.1440-1681.2004.04017.x
  36. Endres, M., Laufs, U., Liao, J. K. and Moskowitz, M. A. (2004) Targeting eNOS for stroke protection. Trends Neurosci. 27, 283-289. https://doi.org/10.1016/j.tins.2004.03.009
  37. Nigam, S. and Schewe, T. (2000) Phospholipase $A_2$s and lipid peroxidation. Biochim. Biophys. Acta 1488, 167-181. https://doi.org/10.1016/S1388-1981(00)00119-0
  38. Stevens, J. F. and Maier, C. S. (2008) Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res. 52, 7-25. https://doi.org/10.1002/mnfr.200700412
  39. Uchida, K. (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318-343. https://doi.org/10.1016/S0163-7827(03)00014-6
  40. Qin, J., Goswami, R., Balabanov, R. and Dawson, G. (2007) Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85, 977-984. https://doi.org/10.1002/jnr.21206
  41. Bratton, D. L. and Henson, P. M. (2005) Autoimmunity and apoptosis: refusing to go quietly. Nat. Med. 11, 26-27. https://doi.org/10.1038/nm0105-26
  42. Chang, M.-K., Binder, C. J., Miller, Y. I., Subbanagounder, G., Silverman, G. J., Berliner, J. A. and Witztum, J. L. (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359-1370. https://doi.org/10.1084/jem.20031763
  43. Adibhatla, R. M., Hatcher, J. F. and Dempsey, R. J. (2006) Lipids and lipidomics in brain injury and diseases. AAPS J. 8, E314-E321. https://doi.org/10.1208/aapsj080236
  44. Candelario-Jalil, E., Mhadu, N. H., Al-Dalain, S. M., Martinez, G. and Leon, O. S. (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci. Res. 41, 233-241. https://doi.org/10.1016/S0168-0102(01)00282-6
  45. McCracken, E., Graham, D. I., Nilsen, M., Stewart, J., Nicoll, J. A. and Horsburgh, K. (2001) 4-Hydroxynonenal immunoreactivity is increased in human hippocampus after global ischemia. Brain Pathol. 11, 414-421. https://doi.org/10.1111/j.1750-3639.2001.tb00409.x
  46. Keller, J. N., Huang, F. F., Zhu, H., Yu, J., Ho, Y. S. and Kindy, M. S. (2000) Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury. J. Cereb. Blood Flow Metab. 20, 1467-1473. https://doi.org/10.1097/00004647-200010000-00008
  47. Chen, J., Graham, S. H., Nakayama, M., Zhu, R. L., Jin, K. L., Stetler, R. A. and Simon, R. P. (1997) Apoptosis repressor genes Bcl-2 and Bcl-X-long are expressed in the rat brain following global ischemia. J. Cereb. Blood Flow Metab. 17, 2-10. https://doi.org/10.1097/00004647-199701000-00002
  48. Adibhatla, R. M., Hatcher, J. F., Sailor, K. A. and Dempsey, R. J. (2002) Polyamines and CNS injury: Spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res. 938, 81-86. https://doi.org/10.1016/S0006-8993(02)02447-2
  49. Tomitori, H., Usui, T., Saeki, N., Ueda, S., Kase, H., Nishimura, K., Kashiwagi, K. and Igarashi, K. (2005) Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36, 2609-2613. https://doi.org/10.1161/01.STR.0000190004.36793.2d
  50. Williams, T. I., Lynn, B. C., Markesbery, W. R. and Lovell, M. A. (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease. Neurobiol. Aging 27, 1094-1099. https://doi.org/10.1016/j.neurobiolaging.2005.06.004
  51. De, S., Trigueros, M. A., Kalyvas, A. and David, S. (2003) Phospholipase $A_2$ plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol. Cell. Neurosci. 24, 753-765. https://doi.org/10.1016/S1044-7431(03)00241-0
  52. Nicolas, J. P., Lin, Y., Lambeau, G., Ghomashchi, F., Lazdunski, M. and Gelb, M. H. (1997) Localization of structural elements of bee venom phospholipase $A_2$ involved in N-type receptor binding and neurotoxicity. J. Biol. Chem. 272, 7173-7181. https://doi.org/10.1074/jbc.272.11.7173
  53. Reid, R. C. (2005) Inhibitors of secretory phospholipase $A_2$ group IIA. Curr. Med. Chem. 12, 3011-3026. https://doi.org/10.2174/092986705774462860
  54. Farooqui, A. A., Horrocks, L. A. and Farooqui, T. (2007) Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101, 577-599. https://doi.org/10.1111/j.1471-4159.2006.04371.x

Cited by

  1. Complex Network-Driven View of Genomic Mechanisms Underlying Parkinson’s Disease: Analyses in Dorsal Motor Vagal Nucleus, Locus Coeruleus, and Substantia Nigra vol.2014, 2014, https://doi.org/10.1155/2014/543673
  2. Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces Opening of Intercellular Junctions vol.6, pp.7, 2010, https://doi.org/10.1371/journal.ppat.1001021
  3. Oxidative-stress induced increase in circulating fatty acids does not contribute to phospholipase A2-dependent appetitive long-term memory failure in the pond snail Lymnaeastagnalis vol.15, pp.1, 2014, https://doi.org/10.1186/1471-2202-15-56
  4. Lipid peroxidation and neurodegenerative disease vol.51, pp.7, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.06.027
  5. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer's disease in rats vol.146-147, 2016, https://doi.org/10.1016/j.pbb.2016.04.002
  6. Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions vol.41, pp.2-3, 2010, https://doi.org/10.1007/s12035-010-8108-6
  7. Neuroprotective Effects of Alpha-Lipoic Acid in Experimental Spinal Cord Injury in Rats vol.33, pp.4, 2010, https://doi.org/10.1080/10790268.2010.11689719
  8. Strong Impact of Chronic Cerebral Hypoperfusion on Neurovascular Unit, Cerebrovascular Remodeling, and Neurovascular Trophic Coupling in Alzheimer’s Disease Model Mouse vol.52, pp.1, 2016, https://doi.org/10.3233/JAD-151126
  9. The Roles of Neutral Sphingomyelinases in Neurological Pathologies vol.37, pp.6, 2012, https://doi.org/10.1007/s11064-011-0692-y
  10. From Chronic Cerebral Hypoperfusion to Alzheimer-Like Brain Pathology and Neurodegeneration vol.35, pp.1, 2015, https://doi.org/10.1007/s10571-014-0127-9
  11. Clinical heterogeneity of PLA2G6-related Parkinsonism: analysis of two Saudi families vol.9, pp.1, 2016, https://doi.org/10.1186/s13104-016-2102-7
  12. The ALDH2 Glu504Lys polymorphism is associated with coronary artery disease in Han Chinese: Relation with endothelial ADMA levels vol.211, pp.2, 2010, https://doi.org/10.1016/j.atherosclerosis.2010.03.030
  13. Phospholipase A2 – nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment vol.5, 2014, https://doi.org/10.3389/fgene.2014.00419
  14. Effects of Lipid Supplements on Tear Biochemistry in Contact Lens Wearers vol.93, pp.10, 2016, https://doi.org/10.1097/OPX.0000000000000947
  15. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia vol.19, pp.14, 2010, https://doi.org/10.1093/hmg/ddq183
  16. Brain Poster Session: Experimental Cerebral Ischemia—in vitro vol.29, pp.1_suppl, 2009, https://doi.org/10.1038/jcbfm.2009.135
  17. The postprandial situation as a pro-inflammatory condition vol.26, pp.4, 2014, https://doi.org/10.1016/j.arteri.2014.02.007
  18. Synthesis and biological efficacy of novel piperazine analogues bearing quinoline and pyridine moieties vol.41, pp.5, 2015, https://doi.org/10.1134/S1068162015040020
  19. Clinical and Biochemical Tear Lipid Parameters in Contact Lens Wearers vol.91, pp.12, 2014, https://doi.org/10.1097/OPX.0000000000000420
  20. Brain Arachidonic Acid Cascade Enzymes are Upregulated in a Rat Model of Unilateral Parkinson Disease vol.35, pp.4, 2010, https://doi.org/10.1007/s11064-009-0106-6
  21. Immunization with neural-derived antigens inhibits lipid peroxidation after spinal cord injury vol.476, pp.2, 2010, https://doi.org/10.1016/j.neulet.2010.04.003
  22. Phospholipases A2 and Inflammatory Responses in the Central Nervous System vol.12, pp.2, 2010, https://doi.org/10.1007/s12017-009-8092-z
  23. Effects of N-acetylcysteine and ebselen on arachidonic acid release from astrocytes and neurons cultured in normoxic or simulated ischemic conditions vol.61, pp.5, 2009, https://doi.org/10.1016/S1734-1140(09)70153-7
  24. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum vol.32, pp.1, 2013, https://doi.org/10.3109/15368378.2012.699012
  25. Calcium-independent phospholipases A2and their roles in biological processes and diseases vol.56, pp.9, 2015, https://doi.org/10.1194/jlr.R058701
  26. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain vol.51, 2015, https://doi.org/10.1016/j.neuro.2015.10.009
  27. Alcohol, Phospholipase A2-associated Neuroinflammation, and ω3 Docosahexaenoic Acid Protection vol.50, pp.1, 2014, https://doi.org/10.1007/s12035-014-8690-0
  28. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity vol.6, pp.5, 2011, https://doi.org/10.2217/nnm.11.86
  29. Frataxin deficiency induces Schwann cell inflammation and death vol.1792, pp.11, 2009, https://doi.org/10.1016/j.bbadis.2009.07.011
  30. Laser Acupuncture at GV20 Improves Brain Damage and Oxidative Stress in Animal Model of Focal Ischemic Stroke 2017, https://doi.org/10.1016/j.jams.2017.08.003
  31. Palm Oil–Derived Natural Vitamin E α-Tocotrienol in Brain Health and Disease vol.29, pp.sup3, 2010, https://doi.org/10.1080/07315724.2010.10719846
  32. Adult Neurogenesis Transiently Generates Oxidative Stress vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0035264
  33. Group IIA secretory phospholipase A2(GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons vol.112, pp.6, 2010, https://doi.org/10.1111/j.1471-4159.2010.06567.x
  34. The PLA2G6 gene in early-onset Parkinson's disease vol.26, pp.13, 2011, https://doi.org/10.1002/mds.23851
  35. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism vol.123, pp.4, 2012, https://doi.org/10.1111/j.1471-4159.2012.07934.x
  36. Oxidative effects on lung inflammatory response in rats exposed to different concentrations of formaldehyde vol.211, 2016, https://doi.org/10.1016/j.envpol.2015.12.054
  37. Changes in lipid peroxidation in the hippocampus and neocortex after severe hypobaric hypoxia in rats vol.3, pp.3, 2009, https://doi.org/10.1134/S1819712409030052
  38. Trauma-Induced Plasmalemma Disruptions in Three-Dimensional Neural Cultures Are Dependent on Strain Modality and Rate vol.28, pp.11, 2011, https://doi.org/10.1089/neu.2011.1841
  39. Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations vol.27, pp.1, 2012, https://doi.org/10.1002/mds.23971
  40. Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: Markers that further explain the higher incidence of neurodegeneration and coronary artery disease vol.125, pp.1-3, 2010, https://doi.org/10.1016/j.jad.2009.12.014
  41. 4-Hydroxy-2-Nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies vol.17, pp.11, 2012, https://doi.org/10.1089/ars.2011.4406
  42. Dynamics of lipid peroxidation of membranes in cells and mitochondrial fraction of neocortex in non- and preconditioned rats after severe hypobaric hypoxia vol.47, pp.2, 2011, https://doi.org/10.1134/S0022093011020083
  43. Chemical modification of ascorbic acid and evaluation of its lipophilic derivatives as inhibitors of secretory phospholipase A2 with anti-inflammatory activity vol.345, pp.1-2, 2010, https://doi.org/10.1007/s11010-010-0561-z
  44. The evolving story of macrophages in acute liver failure vol.147, pp.1-2, 2012, https://doi.org/10.1016/j.imlet.2012.07.002
  45. Differential Sphingolipid and Phospholipid Profiles in Alcohol and Nicotine-Derived Nitrosamine Ketone-Associated White Matter Degeneration vol.39, pp.12, 2015, https://doi.org/10.1111/acer.12909
  46. The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder vol.138, pp.3, 2012, https://doi.org/10.1016/j.jad.2012.01.016
  47. NADPH Oxidase-2: Linking Glucose, Acidosis, and Excitotoxicity in Stroke vol.22, pp.2, 2015, https://doi.org/10.1089/ars.2013.5767
  48. Phospholipase A2: The key to reversing long-term memory impairment in a gastropod model of aging vol.34, pp.2, 2013, https://doi.org/10.1016/j.neurobiolaging.2012.02.028
  49. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer’s Disease vol.51, pp.1, 2016, https://doi.org/10.3233/JAD-150916
  50. Oxidative Stress Biomarkers: Establishment of Reference Values for Isoprostanes, AOPP, and NPBI in Cord Blood vol.2017, 2017, https://doi.org/10.1155/2017/1758432
  51. Syndromes of Neurodegeneration With Brain Iron Accumulation vol.19, pp.2, 2012, https://doi.org/10.1016/j.spen.2012.03.005
  52. Increase of cytosolic phospholipase A2 as hydrolytic enzyme of phospholipids and autism cognitive, social and sensory dysfunction severity vol.16, pp.1, 2017, https://doi.org/10.1186/s12944-016-0391-4
  53. Edaravone injection reverses learning and memory deficits in a rat model of vascular dementia vol.49, pp.1, 2017, https://doi.org/10.1093/abbs/gmw116
  54. Group X secreted phospholipase A2 specifically decreases sperm motility in mice vol.226, pp.10, 2011, https://doi.org/10.1002/jcp.22606
  55. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA vol.32, pp.4-6, 2011, https://doi.org/10.1016/j.mam.2011.10.010
  56. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling vol.18, pp.10, 2013, https://doi.org/10.1089/ars.2011.4498
  57. Targeting NADPH Oxidase and Phospholipases A2 in Alzheimer’s Disease vol.41, pp.2-3, 2010, https://doi.org/10.1007/s12035-010-8107-7
  58. Defining the Mechanisms by Which the Reactive Oxygen Species By-Product, 4-Hydroxynonenal, Affects Human Sperm Cell Function1 vol.92, pp.4, 2015, https://doi.org/10.1095/biolreprod.114.126680
  59. Nanoparticles for Targeted Delivery of Antioxidant Enzymes to the Brain after Cerebral Ischemia and Reperfusion Injury vol.33, pp.4, 2013, https://doi.org/10.1038/jcbfm.2012.209
  60. Quantitative profiling and identification of differentially expressed plasma proteins in friedreich's ataxia vol.91, pp.11, 2013, https://doi.org/10.1002/jnr.23262
  61. Evidence for inflammation-mediated memory dysfunction in gastropods: putative PLA2 and COX inhibitors abolish long-term memory failure induced by systemic immune challenges vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2202-14-83
  62. Time course of lipid peroxidation in hippocampal membranes of preconditioned and nonpreconditioned rats subjected to severe hypobaric hypoxia vol.4, pp.2, 2010, https://doi.org/10.1134/S1819712410020066
  63. Perillyl alcohol improves functional and histological outcomes against ischemia–reperfusion injury by attenuation of oxidative stress and repression of COX-2, NOS-2 and NF-κB in middle cerebral artery occlusion rats vol.747, 2015, https://doi.org/10.1016/j.ejphar.2014.09.015
  64. Role of Oxidant Scavengers in the Prevention of Ca2+ Homeostasis Disorders vol.15, pp.10, 2010, https://doi.org/10.3390/molecules15107167
  65. Lipid Oxidation and Peroxidation in CNS Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities vol.12, pp.1, 2010, https://doi.org/10.1089/ars.2009.2668
  66. Brain-derived neurotrophic factor alleviates the oxidative stress induced by oxygen and glucose deprivation in an ex vivo brain slice model pp.00219541, 2018, https://doi.org/10.1002/jcp.27646
  67. Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion vol.14, pp.5, 2019, https://doi.org/10.4103/1673-5374.249226