DOI QR코드

DOI QR Code

Regulation Fe65 localization to the nucleus by SGK1 phosphorylation of its Ser566 residue

  • Lee, Eun-Jeoung (School of Science Education, Chungbuk National University) ;
  • Chun, Jae-Sun (Department of Biological Education, Korea National University of Education) ;
  • Hyun, Sung-Hee ;
  • Ahn, Hye-Rim (School of Science Education, Chungbuk National University) ;
  • Jeong, Jae-Myung (Department of Biological Education, Korea National University of Education) ;
  • Hong, Soon-Kwang (Division of Life Science, Myungji University) ;
  • Hong, Jin-Tae (Department of Pharmacy, Chungbuk National University) ;
  • Chang, In-Kyeong (School of Science Education, Chungbuk National University) ;
  • Jeon, Hye-Yeon (School of Science Education, Chungbuk National University) ;
  • Han, Yeon-Soo (Department of Agricultural Biology, Chonnam National University) ;
  • Auh, Chung-Kyoon (Division of Applied Biotechnology, Mokpo National University) ;
  • Park, Jae-In (Department of Forest Science, Chungbuk National University) ;
  • Kang, Sang-Sun (School of Science Education, Chungbuk National University)
  • Published : 2008.01.31

Abstract

Fe65 is characterized as an adaptor precursor (APP) through its PID2 element, as well as with the other members of the APP protein family. With the serum- and glucocorticoid-induced kinase 1 (SGK1) substrate specificity information, we found that the putative site of phosphorylation in Fe65 by SGK1 is present on its $Ser^{566}$ residue in $^{560}CRVRFLSFLA^{569}$(X60469). Thus, we demonstrated that Fe65 and the fluorescein-labeled Fe65 peptide $FITC-^{560}CRVRFLSFLA^{569}$ are phosphorylated in vitro by SGK1. Phosphorylation of the $Ser^{566}$ residue was also demonstrated using a $Ser^{566}$ phospho-specific antibody. The phospho Fe65 was found mainly in the nucleus, while Fe65 S556A mutant was localized primarily to the cytoplasm. Therefore, these data suggest that SGK1 phosphorylates the $Ser^{566}$ residue of Fe65 and that this phosphorylation promotes the migration of Fe65 to the nucleus of the cell.

Keywords

References

  1. Duilio, A., Zambrano, N., Mogavero, A. R., Ammendola, R., Cimino, F. and Russo, T. (1991) A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res. 19, 5269-5274. https://doi.org/10.1093/nar/19.19.5269
  2. Simeone, A., Acampora, A., De, D., Felice. C., Faraonia, R., Paolocci, F., Cimino, F. and Russo, T. (1994) Expression of the neuron-specific FE65 gene marks the development of embryo ganglionic derivatives. Neurosci. 16, 53-60.
  3. Gormley, K., Dong, D. and Sagnella, G. A. (2003) Regulation of the epithelial sodium channel by accessory proteins. Biochem. J. 371, 1-4. https://doi.org/10.1042/BJ20021375
  4. Webster, M. K., Goya, L. Ge, Y., Maiyar, L. C. and Firestone, G. L. (1993) Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucoco-rticoids and serum. Mol. Cell Biol. 13, 2031-2040. https://doi.org/10.1128/MCB.13.4.2031
  5. Hargava, A., Fullerton, M. J., Myles, K., Purdy, T. M., W. Funder, J., Pearce, D. and Cole, T. J. (2001) The serumand glucocorticoid-induced kinase is a physiological mediator of aldosterone action. Endocrinology 142, 1587-1594. https://doi.org/10.1210/en.142.4.1587
  6. McCormick, A., Bhalla, V., Pao, A. C. and Pearce, D. (2005) SGK1: a rapid aldosterone-induced regulator of renal sodium reabsorption. Physiology (Bethesda) 20, 134-139. https://doi.org/10.1152/physiol.00053.2004
  7. Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, S. A. and Greenberg, M. E. (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell Biol. 21, 952-965. https://doi.org/10.1128/MCB.21.3.952-965.2001
  8. Leong, M. L., Maiyar, A. C., Kim, M., O'Keeffe, B. A. and Firestone, G. L. (2003) Expression of the serum- and glucocorticoid- inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J. Biol. Chem. 278, 5871-5782. https://doi.org/10.1074/jbc.M211649200
  9. Park, J., Leong, M. L., Buse, P., Maiyar, A. C., Firestone, G. L. and Hemmings, B. A. (1999) Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J. 18, 3024-3033. https://doi.org/10.1093/emboj/18.11.3024
  10. Chun, J., Kwon, T., Kim, D. J., Park, I., Chung, G., Lee, E. J., Hong, S. K., Chang, S. I., Kim, H. Y. and Kang, S. S. (2003) Inhibition of mitogen-activated kinase kinase kinase 3 activity through phosphorylation by the serum- and glucocorticoid-induced kinase 1. J. Biochem. (Tokyo) 133, 103-108. https://doi.org/10.1093/jb/mvg010
  11. Kobayashi, T., Deak, M., Morrice, N. and Cohen, P. (1999) Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem. J. 344, 189-197. https://doi.org/10.1042/0264-6021:3440189
  12. Yaffe, M. B., Leparc, G. G., Lai, J., Obata, T., Volinia, S. and Cantley, L. C. (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348-353. https://doi.org/10.1038/86737
  13. Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S. and Zambrano, N. (1998) Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's beta-amyloid precursor protein. FEBS Lett. 434, 1-7. https://doi.org/10.1016/S0014-5793(98)00941-7
  14. Tanahashi, H. and Tabira, T. (1999) Genome structure and chromosomal mapping of the gene for Fe65L2 interacting with Alzheimer's beta-amyloid precursor protein. Biochem. Biophys. Res. Commun. 258, 385-389. https://doi.org/10.1006/bbrc.1999.0639
  15. Zambrano, N., Buxbaum, J. D., Minopoli, G., Fiore, F., De Candia, P., De Renzis, S., Faraonia, S., Sabo, S., Cheetham, J., Sudol, M. and Russo, T. (1997) Interaction of the phosphotyro-sine interaction/phosphotyrosine binding -related domains of Fe65 with wild-type and mutant Alzheimer's beta-amyloid precursor proteins. J. Biol. Chem. 272, 6399-6405. https://doi.org/10.1074/jbc.272.10.6399
  16. Zambrano, N., Minopoli, G., de Candia, P. and Russo, T. (1998) The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20128-20133. https://doi.org/10.1074/jbc.273.32.20128
  17. Kimberly, W. T., Zheng, J. B., Guenette, S. Y. and Selkoe, D. J. (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40288-40292. https://doi.org/10.1074/jbc.C100447200
  18. Maiyar, A. C., Leong, M. L. and Firestone, G. L. (2003) Importin-alpha mediates the regulated nuclear targeting of serum- and glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase central domain. Mol. Biol. Cell. 14, 1221-1239. https://doi.org/10.1091/mbc.E02-03-0170
  19. Perkinton, M. S., Standen, C. L., Lau, K. F., Kesavapany, S., Byers, H. L., Ward, M., McLoughlin, D. M. and Miller, C. C. (2004) The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling. J. Biol. Chem. 279, 22084-22091. https://doi.org/10.1074/jbc.M311479200
  20. Yang, Z., Cool, B. H., Martin, G. M. and Hu, Q. (2006) A dominant role for FE65 (APBB1) in nuclear signaling. J. Biol. Chem. 281, 4207-4214. https://doi.org/10.1074/jbc.M508445200
  21. Yoneda, Y., Hieda, M., Nagoshi, E. and Miyamoto, Y. (1999) Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct. Funct. 24, 425-433. https://doi.org/10.1247/csf.24.425
  22. Kang, H.Y., Shim, D., Kang, S. S., Chang, S. I. and Kim, H. Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J. Biochem. Mol. Biol. 39, 97-104. https://doi.org/10.5483/BMBRep.2006.39.1.097
  23. Chun, J., Hyun, S., Kwon, T., Lee, E. J., Hong, S. K. and Kang, S. S. (2005) The subcellular localization control of integrin linked kinase 1 through its protein-protein interaction with caveolin-1. Cell Signal. 17, 751-760. https://doi.org/10.1016/j.cellsig.2004.10.016

Cited by

  1. A Novel Function of the Fe65 Neuronal Adaptor in Estrogen Receptor Action in Breast Cancer Cells vol.289, pp.18, 2014, https://doi.org/10.1074/jbc.M113.526194
  2. The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1 vol.14, pp.2, 2010, https://doi.org/10.1080/19768354.2010.486939
  3. Engulfment adaptor phosphotyrosine-binding-domain-containing 1 (GULP1) is a nucleocytoplasmic shuttling protein and is transactivationally active together with low-density lipoprotein receptor-related protein 1 (LRP1) vol.450, pp.2, 2013, https://doi.org/10.1042/BJ20121100
  4. Phosphorylation of Fe65 amyloid precursor protein-binding protein in response to neuronal differentiation vol.613, 2016, https://doi.org/10.1016/j.neulet.2015.12.050
  5. Extensive nuclear sphere generation in the human Alzheimer's brain vol.48, 2016, https://doi.org/10.1016/j.neurobiolaging.2016.08.016
  6. Nuclear localization of amyloid-β precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0173888
  7. Phosphorylation of FE65 at threonine 579 by GSK3β stimulates amyloid precursor protein processing vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12334-2
  8. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action vol.24, pp.6, 2010, https://doi.org/10.1096/fj.09-139998