DOI QR코드

DOI QR Code

Overexpression of a delayed early gene hlg1 of temperate mycobacteriophage L1 is lethal to both M. smegmatis and E. coli

  • Published : 2008.05.31

Abstract

Two genes of temperate mycobacteriophage L5, namely, gp63 and gp64, were hypothesized to be toxic to M. smegmatis. An identical L5 gp64 ortholog (designated hlg1) was cloned from homoimmune mycobacteriophage L1 and characterized at length here. As expected, hlg1 affected the growth of M. smegmatis when overexpressed from a resident plasmid. HLG1 (the protein encoded by hlg1) in fact caused growth retardation of M. smegmatis and the region encompassing its 57-114 C-terminal amino acid residues was found indispensable for its growthretardation activity. Both nucleic acid and protein biosynthesis were severely impaired in M. smegmatis expressing HLG1. Interestingly, HLG1 also affected E. coli almost similarly. This putative delayed early lipoprotein did not participate in the lytic growth of L1.

Keywords

References

  1. Sau, S., Chattoraj, P., Ganguly, T., Chanda, P.K. and Mandal, N.C. (2008) Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery. Curr. Protein Pept. Sci. (in press)
  2. Liu, J., Dehbi, M., Moeck, G., Arhin, F., Bauda, P., Bergeron, D., Callejo, M., Ferretti, V., Ha, N., Kwan, T., McCarty, J., Srikumar, R., Williams, D., Wu, J. J., Gros, P., Pelletier, J. and DuBow, M. (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22, 185-191 https://doi.org/10.1038/nbt932
  3. Hatfull, G. F. (2000) Molecular genetics of mycobacteriophages; in Molecular Genetics of Mycobacteria, Hatfull, G. F. and Jacobs, W. R., Jr. (eds.), ASM Press, Washington D.C., pp. 37-54
  4. Ganguly, T., Bandhu, A., Chattoraj, P., Chanda. P. K., Das, M., Mandal, N. C. and Sau, S. (2007) Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol. J. 4, 64 https://doi.org/10.1186/1743-422X-4-64
  5. Chaudhuri, B., Sau, S., Datta, H. J. and Mandal, N. C. (1993) Isolation, characterization, and mapping of temperature- sensitive mutations in the genes essential for lysogenic and lytic growth of the mycobacteriophage L1. Virology 194, 166-172 https://doi.org/10.1006/viro.1993.1246
  6. Sun, X., Gohler, A., Heller, K. J. and Neve, H. (2006) The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology. 350, 146-157 https://doi.org/10.1016/j.virol.2006.03.001
  7. Clapper, B., Tu, A. H., Elgavish, A. and Dybvig, K. (2004) The vir gene of bacteriophage MAV1 confers resistance to phage infection on Mycoplasma arthritidis. J. Bacteriol. 186, 5715-5720 https://doi.org/10.1128/JB.186.17.5715-5720.2004
  8. Pedruzzi, I., Rosenbusch, J. P. and Locher, K. P. (1998) Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiol. Lett. 168, 119-125 https://doi.org/10.1111/j.1574-6968.1998.tb13264.x
  9. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA
  10. Triccas, J. A., Parish, T., Britton, W. J. and Gicquel, B. (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 151-156 https://doi.org/10.1111/j.1574-6968.1998.tb13221.x
  11. Bachrach, G., Colston, M. J., Bercovier, H., Bar-Nir, D., Anderson, C. and Papavinasasundaram, K. G. (2000) A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology. 146, 297-303 https://doi.org/10.1099/00221287-146-2-297
  12. Blokpoel, M. C., Murphy, H. N., O'Toole, R., Wiles, S., Runn, E. S., Stewart, G. R., Young, D.B. and Robertson, B. D. (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 33, e22 https://doi.org/10.1093/nar/gni023
  13. Ganguly, T., Chattoraj, P., Das, M., Chanda, P. K., Mandal, N. C., Lee, C. Y. and Sau, S. (2004) A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA. J. Biochem. Mol. Biol. 37, 709-714 https://doi.org/10.5483/BMBRep.2004.37.6.709
  14. Chanda, P. K., Ganguly, T., Das, M., Lee, C. Y., Luong, T. T. and Sau, S. (2007) Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter-lacZ transcriptional fusion. J. Biochem. Mol. Biol. 40, 936-943 https://doi.org/10.5483/BMBRep.2007.40.6.936
  15. Wayne, L. G. (1977) Synchronized replication of Mycobacterium tuberculosis. Infect Immun. 17, 528-530

Cited by

  1. IRDL Cloning: A One-Tube, Zero-Background, Easy-to-Use, Directional Cloning Method Improves Throughput in Recombinant DNA Preparation vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0107907
  2. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection vol.108, pp.4, 2018, https://doi.org/10.1111/mmi.13946