Pyrolysis Characteristics of the Mixture of Waste Fishing Net and Waste Ship Lubricating Oil

폐어망과 선박용 폐윤활유 혼합물의 열분해반응 특성 연구

  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Young-Sik (Department of Chemical Engineering, Kangwon National University)
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김영식 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2008.08.25
  • Accepted : 2008.09.02
  • Published : 2008.10.10

Abstract

Kinetic tests on pyrolysis of waste fishing net [WFN; nylon-6], waste ship lubricating oil [WSLO] and their mixture were carried out by thermogravimetric analysis (TGA) with heating rate of 0.5, 1.0, and $2.0^{\circ}C/min$. Pyrolysis of waste fishing net started at $300^{\circ}C$, and the main region of decomposition temperature was between 360 and $440^{\circ}C$ at each heating rate. Decomposition temperature of the mixture of WFN and WSLO was lower than that of WFN and WSLO, and the shape of thermogravimetic graph of mixture was different as well. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for the mixture of WFN and WSLO were between 98 and 427 kJ/mol as the conversion increased from 5% to 95%. Tubing reactor was used to analysis of pyrolyzed oil at $440^{\circ}C$ for 80 min. The selectivity of specific hydrocarbons was not detected and the carbon number distribution of the pyrolyzed oil was below $C_{22}$.

열중량 분석기(TGA)를 이용하여 승온속도를 0.5, 1.0 및 $2.0^{\circ}C/min$으로 변화시키면서 nylon-6 재질 폐어망과 선박용 폐윤활유 혼합물에 대한 열분해반응 특성 연구를 수행하였다. 폐어망은 $300^{\circ}C$부터 열분해반응이 시작되었으며, 각각의 승온속도에서 열분해반응은 $360{\sim}440^{\circ}C$ 구간에서 급격하게 진행되었다. 폐어망과 폐윤활유를 혼합하여 열분해할 경우 각각을 열분해할 때보다 낮은 온도에서 열분해 반응이 진행되었으며 열중량 변화곡선의 형태도 각각을 열분해 했을 때와 구분되었다. 열중량 분석을 통해서 얻은 데이터는 미분법으로 열분해반응 활성화에너지 및 빈도인자를 구하였다. 혼합물의 열분해반응 전환율이 5~95%일 때 활성화에너지는 98~427 kJ/mol 내에 분포하였다. 미분반응기를 이용하여 반응온도 $440^{\circ}C$에서 반응시간 80 min 동안 열분해반응 실험을 수행한 결과 폐어망, 폐윤활유 및 혼합물은 특정한 탄화수소화합물에 대한 선택성은 나타나지 않았으며, 생성된 오일의 탄소수 분포는 대부분 $C_{22}$ 이하였다.

Keywords

References

  1. D. H. Choi, A study on the practical effect for the acting of protection policy of marine environmental, Korea Maritime Institute, 5 (2001)
  2. S.-S. Kim and Y.-J. Chung, J. Korean Ind. Eng. Chem., 14, 793 (2003)
  3. S.-S. Kim, J.-K. Jeon, Y.-K. Park, and S. Kim, Waste Manag., 25, 811 (2005) https://doi.org/10.1016/j.wasman.2005.01.017
  4. S. Kim, J.-G. Jun, and K.-S. Yoo, J. Korean Solid Wastes Eng., 18, 410 (2001)
  5. J. Brandrup, M. Bittner, W. Michaeli, and G. Menges, Recycling and Recovery of Plastics, Hanser Publishers, 434 (1996)
  6. S.-S. Kim and S. Kim, Chem. Eng. J., 98, 53 (2004) https://doi.org/10.1016/S1385-8947(03)00184-0
  7. J. Ceamanos, J. F. Mastral, A. Millera, and M. E. Aldea, J. Anal. Appl. Pyrolysis, 65, 93 (2002) https://doi.org/10.1016/S0165-2370(01)00183-8
  8. L. Ballice, Fuel, 81, 1233 (2002) https://doi.org/10.1016/S0016-2361(01)00130-2
  9. P. Straka, J. Nahunkova, and Z. Brozova, J. Anal. Appl. Pyrolysis, 71, 213 (2004) https://doi.org/10.1016/S0165-2370(03)00089-5
  10. S. Czernik, C. C. Elam, R. J. Evans, R. R. Meglen, L. Moens, and K. Tatsumoto, J. Anal. Appl. Pyrolysis, 46, 51 (1998) https://doi.org/10.1016/S0165-2370(98)00068-0
  11. H. Bockhorn, S. Donner, M. Gernsbeck, A. Hornung, and U. Hornung, J. Anal. Appl. Pyrolysis, 58, 79 (2001) https://doi.org/10.1016/S0165-2370(00)00187-X
  12. R. S. Lehrle, I. W. Parsons, and M. Rollinson, Polym. Degrad. Stabil., 67, 21 (2000) https://doi.org/10.1016/S0141-3910(99)00112-3
  13. S.-S. Kim, J. Korean Ind. Eng. Chem., 18, 511 (2007)
  14. S.-S. Kim and J.-K. Jeon, J. Korean Ind. Eng. Chem., 15, 564 (2004)
  15. S.-S. Kim, B. H. Chun, and S. H. Kim, Chem. Eng. J., 93, 225 (2003) https://doi.org/10.1016/S1385-8947(02)00262-0