DOI QR코드

DOI QR Code

Improved Apparent Digestibility Coefficient of Protein and Phosphorus by Supplementation of Microbial Phytase in Diets Containing Cottonseed and Soybean Meal for Juvenile Olive Flounder (Paralichthys olivaceus)

  • Pham, Minh Anh (Department of Marine Life Science, Cheju National University) ;
  • Lee, Kyeong-Jun (Department of Marine Life Science, Cheju National University) ;
  • Dang, Tuyet Mai (Department of Marine Life Science, Cheju National University) ;
  • Lim, Se-Jin (Department of Marine Life Science, Cheju National University) ;
  • Ko, Gyung-Yong (Department of Marine Life Science, Cheju National University) ;
  • Eo, Jinee (Department of Marine Life Science, Cheju National University) ;
  • Oh, Dae-Han (Department of Marine Life Science, Cheju National University)
  • 투고 : 2008.01.22
  • 심사 : 2008.05.06
  • 발행 : 2008.09.01

초록

This study was conducted to investigate the effects of phytase in diets containing cottonseed and soybean meal (CS) on growth performance, feed utilization and digestibility of protein and phosphorus in juvenile olive flounder (initial body weight 2.5 g), Paralichthys olivaceus. Four experimental diets replacing 0%, 30%, 30% and 40% fish meal protein with CS in equal proportion were formulated to be isonitrogenous and isocaloric (designated as CS0, CS30, CS30+P, CS40+P, respectively). Phytase of 1,000 FTU/kg was supplemented in diets CS30+P and CS40+P. Three groups of fish (25 fish per group) were fed one of the experimental diets for 10 weeks. No significant differences were observed in growth performance of fish groups except for the CS40+P diet. Apparent digestibility coefficients of protein and phosphorus in fish fed phytase-containing diets were significantly higher than those of fish fed the CS0 diet. Serum cholesterol was significantly reduced in fish fed the CS-containing diets. Antioxidant activities in the diets and liver of fish were significantly increased with the increment of dietary CS. Gossypol was only detected and found in liver of the fish fed the CS-containing diets. The findings suggest that supplementation of microbial phytase could improve the apparent digestibility of protein and phosphorus in juvenile olive flounder fed the CS-containing diets.

키워드

참고문헌

  1. Ali, A. A., M. T. Velasquez, C. T. Hansen, A. I. Mohamed and S. J. Bhathena. 2004. Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes. J. Nutr. Biochem. 15:583-590. https://doi.org/10.1016/j.jnutbio.2004.04.005
  2. Anderson, R. L. and W. J. Wolf. 1995. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 125:581S-588S.
  3. AOAC. 1995. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington Virginia
  4. Barbara, F., PH. D. Harland and M. S. Gurleen Narula. 1999. Food phytate and its hydrolysis products. Nutr. Res. 19:947-961. https://doi.org/10.1016/S0271-5317(99)00055-X
  5. Baruah, K., N. P. Sahu, A. K. Pal and D. Debnath. 2004. Dietary phytase: An ideal approach for a cost effective and lowpolluting aquafeed. NAGA, World Fish Center Quarterly 27:15-19.
  6. Brand-William, W., M. E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28:25-30.
  7. Broz, J., P. Oldale, A. H. Perrin-voltz, G. Tychen, J. Schulze and C. Simoes Nunes. 1994. Effects of supplemental phytase on performance and phosphorus utilization in broiler chickens fed a low phosphorus diet without addition of inorganic phosphates. Bra. Poul. Sci. 35:273-280. https://doi.org/10.1080/00071669408417691
  8. Chen, Q. C. and B. W. Li. 2003. Separation of phytic acid and other related inositol phosphates by high-performance ion chromatography and its applications. J. Chromatogr. A 1018: 41-52. https://doi.org/10.1016/j.chroma.2003.08.040
  9. Cheng, Z. J. and R. W. Hardy. 2002. Effect of microbial phytase on apparent digestibility of barley, canola meal and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr. 8:271-277. https://doi.org/10.1046/j.1365-2095.2002.00219.x
  10. Cheng, Z. J. and R. W. Hardy. 2003. Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture 218:501-514. https://doi.org/10.1016/S0044-8486(02)00458-1
  11. Chisholm, A., K. Me. Auley, J. Mann, S. Williams and M. Skeaff. 2005. Cholesterol lowering effects of nuts compared with a canola oil enriched cereal of similar fat composition. Nutr. Metabol. Cardiovas. Dis. 15:284-292. https://doi.org/10.1016/j.numecd.2005.01.006
  12. Cho, C. Y. and S. J. Kaushik. 1990. Nutritional energetics in fish: energy and protein utilization in rainbow trout. World Rev. Nutr. Diet. 61:132-172.
  13. Dabrowski, K., J. Rinchard, K.-J. Lee, J. H. Blom, A. Cierezko and J. Ottobre. 2000. Effects of diets containing gossypol on reproductive capacity of rainbow trout (Oncorhynchus mykiss). Biol. Reprod. 62:227-234. https://doi.org/10.1095/biolreprod62.2.227
  14. Debnath, D., N. P. Sahu, A. K. Pal, K. Brauak, S. Yengkokpam and S. C. Mukkerjee. 2005a. Present scenario and future prospects of phytase in aquafeed-Review. Asian-Aust. J. Anim. Sci. 18 (12):1800-1812. https://doi.org/10.5713/ajas.2005.1800
  15. Debnath, D., N. P. Pal, N. P. Sahu, K. K. Jain and S. Yengkokpam. 2005b. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquacult. Res. 36: 180-187. https://doi.org/10.1111/j.1365-2109.2004.01203.x
  16. Dias, J., A. J. Alvarel, G. Corraze, A. Diez, J. M. Bautista and S. J. Kaushik. 2005. Dietary protein source affects lipid metabolism in the European sea bass (Dicentra labrax). Comp. Biochem. Physiol. A 142:19-31. https://doi.org/10.1016/j.cbpb.2005.07.005
  17. Dorsa, W. J., R. H. Robinette, H. E. Robinson and E. W. Poe. 1982. Effects of dietary cottonseed meal and gossypol on growth of young channel catfish. Trans. Am. Fish. Soc. 111:651-655. https://doi.org/10.1577/1548-8659(1982)111<651:EODCMA>2.0.CO;2
  18. Edwards, M. S. and J. D. Radcliffe. 1995. A comparison of the effect of cottonseed oil and corn oil on lipid status in the rat. Biochem. Arch. 11:103-109.
  19. Este'vez, A., A. Delgado, P. Hortelano and M. Alejandre. 1996. Characterization of mevelonate metabolism in the sea bass, Dicentrarchus labrax L. liver. Fish Physiol. Biochem. 15:205-211. https://doi.org/10.1007/BF01875571
  20. Folch, J., M. Lee and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  21. Fontainhas-Femandes, A., E. Gomes, M. A. Reis-Henriques and J. Coimbra. 1999. Replacement of fish meal by plant protein in the diet of Nile tilapia: digestibility and growth performance. Aquacult. Int. 7:57-67. https://doi.org/10.1023/A:1009296818443
  22. Forster, I., D. A. Higgs, B. S. Dosanjh, M. Rowshandeli and J. Parr. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in $11^{\circ}C$ fresh water. Aquaculture 179: 109-125. https://doi.org/10.1016/S0044-8486(99)00156-8
  23. Furukawa, H. and H. Tsukahara. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jap. Soc. Sci. Fish. 32:502-508. https://doi.org/10.2331/suisan.32.502
  24. Garcia-Abiado, M. A., G. Mbahinzireki, J. Rinchard, K.-J. Lee and K. Dabrowski. 2004. Effects of diets containing gossypol on blood parameters and spleen structure in tilapia, Oreochromis sp., reared in re-circulating system. J. Fish Dis. 27:359-368. https://doi.org/10.1111/j.1365-2761.2004.00551.x
  25. Goldberg, A. P., A. Lim, J. B. Kolar, J. J. Grundhauser, F. H. Steiuke and G. Schonfeld. 1982. Soybean protein independently lowers plasma cholesterol levels in primary hypercholesterolemia. Atherosclerosis 43:355-368. https://doi.org/10.1016/0021-9150(82)90035-1
  26. Han, Y, D. B. Wilson and X. G. Lei. 1999. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appi. Environ. Microb. 65:1915-1918.
  27. Hotz, C. and R. S. Gibson. 2001. Assessment of home-based processing methods to reduce the phytate content and phytate/ zinc molar ratio of white maize (Zea mays). J. Agric. Food Chem. 49:692-698. https://doi.org/10.1021/jf000462w
  28. Hughes, K. P. and J. H. Jr. Soares. 1998. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aquacult. Nutr. 4: 133-140. https://doi.org/10.1046/j.1365-2095.1998.00057.x
  29. Kaushik, S. J., J. P. Cravedi, J. P. Lalles, J. Sumpter, B. Faucouneau and M. Laroche. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout Oncorhynchus mykiss. Aquaculture 133:257-274. https://doi.org/10.1016/0044-8486(94)00403-B
  30. Kikuchi, K. 1999. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichthys olivaceus). Aquaculture 179: 3-11. https://doi.org/10.1016/S0044-8486(99)00147-7
  31. Kikuchi, K., T. Furuta and H. Honda. 1994. Utilization of soybean meal as a protein source in the diet of juvenile Japanese flounder, Paralichthys olivaceus. Suisanzoshoku 42:601-604.
  32. Kim, H. L. and M. C. Calhoun. 1995. Determination of gossypol in plasma and tissues of animals. Symposium on Available Gossypol in Cottonseed Products. Information 6, 486 (Abstr.)
  33. Kim, K. W., X. J. Wang and S. C. Bai. 2002. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquacult. Res. 33:673-679. https://doi.org/10.1046/j.1365-2109.2002.00704.x
  34. Kim, T. W. and X. G. Lei. 2005. An improved method for rapid determination of phytase activity in animal feed. J. Anim. Sci. 83:1062-1067. https://doi.org/10.2527/2005.8351062x
  35. Kim, Y. C., G. Y. Yoo, X. Wang, S. H. Lee, I. S. Shin and S. C. Bai. 2008. Long term feeding effects of dietary dehulled soybean meal as a fish meal replacer in growing olive flounder Paralichthys olivaceus. Asian-Aust. J. Anim. Sci. 21:868-872. https://doi.org/10.5713/ajas.2008.70496
  36. Lanari, D., D. D'Agaro and C. Turri. 1998. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 161 :345-356. https://doi.org/10.1016/S0044-8486(97)00282-2
  37. Lee, D. J. and G. B. Putman. 1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J. Nutr. 103:916-922. https://doi.org/10.1093/jn/103.6.916
  38. Lee, K.-J. and K. Dabrowski. 2002. High performance liquid chromatographic determination of gossypol and gossypolone enantiomers in fish tissues using simultaneous electrochemical and ultraviolet detectors. J. Chromatogr. B 779:313-319. https://doi.org/10.1016/S1570-0232(02)00402-6
  39. Lee, K.-J., K. Dabrowski, J. H. Blom, S. C. Bai and P. C. Stromberg. 2002. A mixture of cottonseed meal and soybean meal and animal byproduct mixture as a fish meal substitute: growth and gossypol enantiomer in juvenile rainbow trout (Oncorhynchus mykiss). J. Anim. Physiol. Anim. Nutr. 86: 201-213. https://doi.org/10.1046/j.1439-0396.2002.00375.x
  40. Leske, K. L. and C. C. Coon. 1999. A bioassay to determine the effect of phytase on phytate phosphorus hydrolysis and total phosphorus retention of feed ingredients as determined with broilers and laying hens. Poul. Sci. 78: 1151-1157. https://doi.org/10.1093/ps/78.8.1151
  41. Li, M. H., B. B. Mauning and E. H. Robinson. 2004. Summary of phytase studies for chaunel catfish. Res. Report 23: 1-5.
  42. Masumoto, T., B. Tamura and S. Shimeno. 2001. Effects of phytase on bioavailability of phosphorus in soybean mealbased diets for Japanese flounder, Paralichthys olivaceus. Fisheries Sci. 67:1075-1080 https://doi.org/10.1046/j.1444-2906.2001.00363.x
  43. Mbahinzireki, G. B., K. Dabrowski, K. -J. Lee, D. El-Saidy and E. R. Wisner. 2001. Growth, feed utilization and body composition of tilapia (Oreochromis sp.) fed with cottonseed meal-based diets in a re-circulating system. Aquacult. Nutr. 7: 189-200 https://doi.org/10.1046/j.1365-2095.2001.00172.x
  44. Naylor, R. L., R. J. Goldburg, J. H. Primavera, N. Hautsky, M. C. M. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney and M. Troell. 2000. Effect of aquaculture on world fish supplies (review article). Nature 405:1017-1024 https://doi.org/10.1038/35016500
  45. NRC. 1993. Nutritional Requirements of Fish. National Academic Press, Washington, DC.
  46. Nwanna, L. C., A. O. Fagbenro and A. O. Adeyo. 2005. Effects of different treatments of dietary soybean meal and phytase on the growth and mineral deposition in African catfish Clarias gariepinus. J. Anim. Vet. Adv. 4:980-987.
  47. Nwoha, P. U. and T. A. Aire. 1995. The effects of gossypol and chloroquine interaction on serum electrolytes of proteinmalnourished rats. Contraception 52:255-259. https://doi.org/10.1016/0010-7824(95)00187-F
  48. Paratryphon, E. and Jr. J. H. Soares. 2001. The effect of phytase on apparent digestibility of four practical plant feed stuffs fed to striped bass, Morone saxatilis. Aquacult. Nutr. 7: 161-167. https://doi.org/10.1046/j.1365-2095.2001.00174.x
  49. Pham, M. A., K.-J. Lee, S.-J. Lim, B.-J. Lee, S.-S. Kim, Y-J. Park and S. M. Lee. 2005. Fish meal replacement by cottonseed and soybean meal in diets for juvenile olive flounder, Paralichthys olivaceus. J. Kor. Aquacult. Soc. 18:215-221.
  50. Pham, M. A., K.-J. Lee, S.-J. Lim and K. H. Park. 2007. Evaluation of cottonseed and soybean meal as partial replacement for fish meal in diets for juvenile Japanese flounder Paralichthys olivaceus. Fisheries Sci. 73:760-769. https://doi.org/10.1111/j.1444-2906.2007.01394.x
  51. Portz, L. and F. Liebert. 2004. Growth, nutrient utilization and parameters of mineral metabolism in Nile tilapia Oreochromis niloticus (Linnaeus, 1758) fed plant-based diets with graded levels of microbial phytase. J. Anim. Physiol. Anim. Nutr. 88: 311-320. https://doi.org/10.1111/j.1439-0396.2004.00486.x
  52. Radcliffe, J. D., C. C. King, D. M. Czajka-Narins and V. Imrhan. 2001. Serum and liver lipids in rats fed diets containing corn oil, cottonseed oil, or a mixture of corn and cottonseed oils. Plant Foods Human Nutr. 56:51-60. https://doi.org/10.1023/A:1008189503099
  53. Saitoh, S., S. Koshio, H. Harada, K. Wantanabe, T. Yoshida, S.-I. Teshima and M. Ishikawa. 2003. Utilization of extruded soybean meal for Japanese flounder Paralichthys olivaceus juveniles. Fisheries Sci. 69: 1075-1077. https://doi.org/10.1046/j.1444-2906.2003.00729.x
  54. Sajjadi, M. and C. G. Carter. 2004. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.) Aquacult. Nutr. 10: 135-142. https://doi.org/10.1111/j.1365-2095.2003.00290.x
  55. Silva, L. G., L. C. Trugo, S. C. Terzi and S. Couri. 2005. Low phytate lupin flour based biomass obtained by fermentation with mutant of Aspergillus niger. Process Biochem. 40:951-954. https://doi.org/10.1016/j.procbio.2004.02.016
  56. Skerget, M., P. Kotnik, M. Hadolin, A. R. Hras, M. Simonic and Z. Knez. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and the antioxidant activities. Food Chem. 89:191-198. https://doi.org/10.1016/j.foodchem.2004.02.025
  57. Sugiura, S. H., J. Gabaudan, F. M. Dong and R. W. Hardy. 2001. Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets. Aquacult. Res. 32:583-592. https://doi.org/10.1046/j.1365-2109.2001.00581.x
  58. Sugiura, S. H., V. Raboy, K. A. Young, F. M. Dong and R. W. Hardy. 1999. Availability of phosphorus and trace elements in low-phytate varieties of barley and corn for rainbow trout Oncorhynchus mykiss. Aquaculture 170:285-296. https://doi.org/10.1016/S0044-8486(98)00414-1
  59. Urbano, G., M. Lopez-Jurado, C. Aranda, V. Vidal, E. Tenorio and J. Porres. 2000. The role ofphytic acid in legumes: antinutrient or beneficial function. J. Physiol. Biochem. 56:283-294. https://doi.org/10.1007/BF03179796
  60. Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13(6):824-829. https://doi.org/10.5713/ajas.2000.824
  61. Van Weerd, J. H., KH. A. Khalaf, F. J. Aartsen and P. A. T Tijssen. 1999. Balance trials with catfish Clarias gariepinus fed phytase treated soybean meal-based diets. Aquacult. Nutr. 5: 135-142. https://doi.org/10.1046/j.1365-2095.1999.00100.x
  62. Vielma, J., K. Rouhonen and M. Peisker. 2002. Dephitinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 204:145-156. https://doi.org/10.1016/S0044-8486(01)00653-6
  63. Wise, A. 1983. Dietary factors determining the biological activities of phytate. Nutr. Abst. Rev. 53:791-807.
  64. Yamamoto, T., A. Akimoto, S. Kishi, T. Unuma and T. Akiyama. 1998. Apparent and true availabilities of amino acids from several protein sources for fingerlings rainbow trout, common carp, and red sea bream. Fisheries Sci. 64:448-458. https://doi.org/10.2331/fishsci.64.448
  65. Yanke, L.. J., H. D. Bae, L.. B. Selinger and K. J. Cheng. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiol. 144: 1565-1573. https://doi.org/10.1099/00221287-144-6-1565
  66. Yoo, G.-Y., X. Wang, S. Choi, K. Han, J.-C. Kang and S. C. Bai. 2005. Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegelii fed diets containing soybean meal. Aquaculture 243:315-322. https://doi.org/10.1016/j.aquaculture.2004.10.025

피인용 문헌

  1. Partial Replacement of Fish Meal by Fermented Skipjack Tuna Viscera in Juvenile Olive Flounder (Paralichthys olivaceus) Diets vol.12, pp.4, 2009, https://doi.org/10.5657/fas.2009.12.4.305
  2. Effects of Fermented Cottonseed and Soybean Meal with Phytase Supplementation on Gossypol Degradation, Phosphorus Availability, and Growth Performance of Olive Flounder (Paralichthys olivaceus) vol.13, pp.4, 2010, https://doi.org/10.5657/fas.2010.13.4.284
  3. L.) fry vol.46, pp.7, 2015, https://doi.org/10.1111/are.12313
  4. Sauvage, 1878) vol.21, pp.1, 2014, https://doi.org/10.1111/anu.12134
  5. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal vol.40, pp.6, 2014, https://doi.org/10.1007/s10695-014-9971-2
  6. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus vol.290, pp.3, 2008, https://doi.org/10.1016/j.aquaculture.2009.02.018
  7. Evaluation of supplemental fish bone meal made from Alaska seafood processing byproducts and dicalcium phosphate in plant protein based diets for rainbow trout (Oncorhynchus mykiss) vol.302, pp.3, 2008, https://doi.org/10.1016/j.aquaculture.2010.02.034
  8. Use of multi-strain probiotics in linseed meal based diet for Labeo rohita fingerlings vol.83, pp.None, 2008, https://doi.org/10.1590/1519-6984.246727