Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies

비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구

  • 이경구 (서울대학교 공과대학 건축학과)
  • Received : 2008.07.08
  • Accepted : 2008.09.26
  • Published : 2008.10.10

Abstract

In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

동반논문(모델개발)에서는 특별철골모멘트골조의 강접합 보-기둥 접합부의 회전능력을 예측하기 위한 해석모델을 제안하였다. 본 논문에서는 접합부 회전능력 기준으로 두 개의 극한상태를 고려하였다. 첫째, 보 단면의 국부좌굴로 인해 공칭소성강도까지 강도저하가 발생하였을 때를 회전능력으로 보는 강도저하 극한상태를 고려하였다. 둘째, 큰 진폭의 변형이 몇 번 반복 후에 좌굴된 플랜지에서 소성변형률 축적으로 야기 되는 저주기 피로 파단을 극한상태로 고려하였다. 두 극한상태까지 제안한 모델을 이용하여 단조증가하중 및 반복하중하에 일련의 해석을 수행하였다. 실무설계에서 사용되는 범위안의 다양한 H-형강 보를 모델링한 후, 플랜지 및 웨브 폭-두께비와 같은 보 단면의 기하학적 변수가 WUF-W 접합부의 회전능력과 저주기 피로수명에 미치는 영향을 관찰하였다.

Keywords

References

  1. AISC(2002) Manual of Steel Constructions, Load & Resistance Factor Design Specification for Structural Steel Building, 3rd ed., American Institute of Steel Construction, Inc., Chicago, IL.
  2. AISC(2005) Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc., ANSI/AISC 341-05, Chicago, IL.
  3. Coffin, Jr., L. F.(1954) A study of Cyclic Thermal Stress in a Ductile Material, ASME Trans., 76, pp.931-950.
  4. FEMA(2000) Recommended Seismic Design Criteria For New Steel Moment-Frame Buildings, FEMA Report No. 350, Federal Emergency Management Agency, Washington, D.C.
  5. Fisher, J.W, Kulak, G.L. and Smith, I.F.C.(1998) A Fatigue Primer for Structural Engineers, National Steel Bridge Alliance, Chicago, IL.
  6. Kemp, A. R.(1985) Interaction of plastic local and lateral buckling, Journal of Structural Engineering, ASCE, 111(10), pp.2181-2196. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:10(2181)
  7. Krawinkler, H., Gupta, A., Medina, R. and Ruco, N. (2000) Loading histories for seismic performance testing of SMRF components and assemblies, Report No. SAC/BD-00/10. SAC Joint Venture. Sacramento, CA.
  8. Manson, S. S.(1953) Behavior of Materials under Conditions of Thermal stress, NACA TN-2933.
  9. Vayas, I.(1997) Investigation of the cyclic behavior of steel beams by application of low-cycle fatigue criteria. Proceedings, Behavior of Steel Structures in Seismic Area: STESSA 1997, pp.350-357.