DOI QR코드

DOI QR Code

Structural analysis of sialyltransferase PM0188 from Pasteurella multocida complexed with donor analogue and acceptor sugar

  • Published : 2008.01.31

Abstract

PM0188 is a newly identified sialyltransferase from P. multocida which transfers sialic acid from cytidine 5'-monophosphonuraminic acid (CMP-NeuAc) to an acceptor sugar. Although sialyltransferases are involved in important biological functions like cell-cell recognition, cell differentiation and receptor-ligand interactions, little is known about their catalytic mechanism. Here, we report the X-ray crystal structures of PM0188 in the presence of an acceptor sugar and a donor sugar analogue, revealing the precise mechanism of sialic acid transfer. Site-directed mutagenesis, kinetic assays, and structural analysis show that Asp141, His311, Glu338, Ser355 and Ser356 are important catalytic residues; Asp141 is especially crucial as it acts as a general base. These complex structures provide insights into the mechanism of sialyltransferases and the structure-based design of specific inhibitors.

Keywords

References

  1. Campbell, J. A., Davies, G. J., Bulone, V. and Henrissat, B. (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326, 929-939 https://doi.org/10.1042/bj3260929u
  2. Yu, H., Chokhawala, H., Karpel, R., Yu, H., Wu, B., Zhang, J., Zhang, Y., Jia, Q. and Chen, X. (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618-17619. https://doi.org/10.1021/ja0561690
  3. Cooke, F. J., Kodjo, A., Clutterbuck, E. J. and Bamford, K. B. (2004) A case of Pasteurella multocida peritoneal dialysis- associated peritonitis and review of the literature. Int. J. Infect. Dis. 8, 171-174. https://doi.org/10.1016/j.ijid.2003.10.004
  4. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S. and Delannoy, P. (2001) The human sialyltransferase family. Biochimie 83, 727-737. https://doi.org/10.1016/S0300-9084(01)01301-3
  5. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. and Dwek, R. A. (2001) Glycosylation and the immune system. Science 291, 2370-2376. https://doi.org/10.1126/science.291.5512.2370
  6. Ni, L., Chokhawala, H. A., Cao, H., Henning, R., Ng, L., Huang, S., Yu, H., Chen, X. and Fisher, A. J. (2007) Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 46, 6288-6298. https://doi.org/10.1021/bi700346w
  7. Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X. and Fisher, A. J. (2006) Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 45, 2139-2148. https://doi.org/10.1021/bi0524013
  8. Unligil, U. M. and Rini, J. M. (2000) Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10, 510-517. https://doi.org/10.1016/S0959-440X(00)00124-X
  9. Pedersen, L. C., Darden, T. A. and Negishi, M. (2002) Crystal structure of beta 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. J. Biol. Chem. 277, 21869-21873. https://doi.org/10.1074/jbc.M112343200
  10. Pedersen, L. C., Dong, J., Taniguchi, F., Kitagawa, H., Krahn, J. M., Pedersen, L. G., Sugahara, K. and Negishi, M. (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420-14428. https://doi.org/10.1074/jbc.M210532200
  11. Crennell, S., Takimoto, T., Portner, A. and Taylor, G. (2000) Crystal structure of the multifunctional paramyxovirus hemagglutinin- neuraminidase. Nat. Struct. Biol. 7, 1068-1074. https://doi.org/10.1038/81002
  12. Burmeister, W. P., Henrissat, B., Bosso, C., Cusack, S. and Ruigrok, R. W. (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19-6. https://doi.org/10.1016/0969-2126(93)90005-2
  13. Carugo, O. and Argos, P. (1997) NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28, 10-28. https://doi.org/10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.0.CO;2-N
  14. Kim, D. U., Yoo, J. H., Ryu, K. and Cho, H. S. (2006) Crystallization and preliminary X-ray crystallographic analysis of the alpha-2,6-sialyltransferase PM0188 from Pasteurella multosida. Acta crystallogr. F Struct. Biol. Cryst. Commun. 62, 142-144. https://doi.org/10.1107/S1744309106000844
  15. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  16. Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in the model. Acta Crystallogr. A 47, 110-119. https://doi.org/10.1107/S0108767390010224
  17. Brunger, A. T., Adams, P. D., Clore, G. M., De Lano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921. https://doi.org/10.1107/S0907444998003254
  18. Vaguine, A. A., Richelle, J. and Wodak, S. J. (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D Biol. Crystallogr. 55, 191-205. https://doi.org/10.1107/S0907444998006684
  19. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. https://doi.org/10.1016/0378-1119(89)90358-2
  20. Gosselin, S., Alhussaini, M., Streiff, M. B., Takabayashi, K. and Palcic, M. M. (1994) A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92-97. https://doi.org/10.1006/abio.1994.1303

Cited by

  1. Biochemical and Biophysical Characterization of the Sialyl-/Hexosyltransferase Synthesizing the Meningococcal Serogroup W135 Heteropolysaccharide Capsule vol.288, pp.17, 2013, https://doi.org/10.1074/jbc.M113.452276
  2. Current trends in the structure-activity relationships of sialyltransferases vol.21, pp.6, 2011, https://doi.org/10.1093/glycob/cwq189
  3. Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis vol.24, pp.2, 2014, https://doi.org/10.1093/glycob/cwt092
  4. Converting Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) to a regioselective α2–6-sialyltransferase by saturation mutagenesis and regioselective screening vol.15, pp.7, 2017, https://doi.org/10.1039/C6OB02702D
  5. Structural insights into sialic acid enzymology vol.12, pp.5, 2008, https://doi.org/10.1016/j.cbpa.2008.06.017
  6. Engineering of a Cytidine 5′-Monophosphate-Sialic Acid Synthetase for Improved Tolerance to Functional Sialic Acids vol.355, pp.18, 2013, https://doi.org/10.1002/adsc.201300568
  7. Crystal structure ofα/β-galactosideα2,3-sialyltransferase from a luminous marine bacterium,Photobacterium phosphoreum vol.583, pp.12, 2009, https://doi.org/10.1016/j.febslet.2009.05.032
  8. An α2,3-Sialyltransferase fromPhotobacteriumsp. JT-ISH-224 TransfersN-Acetylneuraminic Acid to Both the O-2 and O-3′ Hydroxyl Groups of Lactose vol.29, pp.2, 2010, https://doi.org/10.1080/07328300903586422
  9. Structure-function relationships of membrane-associated GT-B glycosyltransferases vol.24, pp.2, 2014, https://doi.org/10.1093/glycob/cwt101
  10. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80 vol.26, pp.4, 2016, https://doi.org/10.1093/glycob/cwv105
  11. Asp141 and the hydrogen-bond chain Asp141–Asn109–Asp33 are respectively essential for GT80 sialyltransferase activity and structural stability vol.80, pp.8, 2015, https://doi.org/10.1134/S0006297915080131
  12. Crystal structures of sialyltransferase fromPhotobacterium damselae vol.588, pp.24, 2014, https://doi.org/10.1016/j.febslet.2014.11.003
  13. Structure and Mechanism of the Lipooligosaccharide Sialyltransferase fromNeisseria meningitidis vol.286, pp.43, 2011, https://doi.org/10.1074/jbc.M111.249920
  14. Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis vol.109, pp.16, 2012, https://doi.org/10.1073/pnas.1119894109
  15. Crossroads between Bacterial and Mammalian Glycosyltransferases vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00492
  16. Neisseria meningitidis Serogroup B Polysialyltransferase: Insights into Substrate Binding vol.11, pp.2, 2010, https://doi.org/10.1002/cbic.200900659
  17. Computer-aided design of human sialyltransferase inhibitors of hST8Sia III vol.31, pp.2, 2018, https://doi.org/10.1002/jmr.2684