가스 유입 방식에 따른 집진장치 내에서의 세라믹 캔들 필터로의 입자 부하 특성 비교

Comparison of Particle Loading Characteristics onto Ceramic Candle Filters in Filtration System at Different Gas Inflow Pattern

  • 박석주 (한국에너지기술연구원 청정석탄연구센터) ;
  • 임정환 (한국에너지기술연구원 청정석탄연구센터) ;
  • 임경수 (한국에너지기술연구원 청정석탄연구센터)
  • Park, Seok-Joo (Clean Coal Technology Research Center, Korea Institute of Energy Research) ;
  • Lim, Jeong-Hwan (Clean Coal Technology Research Center, Korea Institute of Energy Research) ;
  • Lim, Kyeong-Soo (Clean Coal Technology Research Center, Korea Institute of Energy Research)
  • 투고 : 2008.03.01
  • 심사 : 2008.04.07
  • 발행 : 2008.10.31

초록

IGCC 파일럿 플랜트의 집진시스템을 최적 설계하기 위하여 수치해석을 수행하였다. 서로 다른 가스 유입 방식이 집진용기 내부의 유체 유동장과 입자 거동에 미치는 영향을 분석하였다. 필터 표면에 전달되는 입자의 부하율은 분진입자가 혼합된 가스가 내부에 차단관이 설치된 집진용기의 외벽에 접하게 설치된 접선 유입구를 따라 집진용기 내로 유입되는 경우 아주 낮았으며, 입자크기가 클수록 입자부하율은 급격히 감소하였다. 이에 반하여, 가스 유동이 집진용기의 필터지지판 중앙에 수직하게 설치된 수직 유입구를 통하여 집진용기 내로 유입되는 경우, 필터 표면으로의 입자 부하율이 아주 높았으며, 입자크기 증가에 따른 입자부하율의 감소는 접선 유입 방식에 비하여 크지 않았다.

Computational simulation has been performed to design optimally the filtration system for IGCC pilot plant. It was analyzed how the different inflow pattern influences the flow field and the particle behavior in a filter vessel. The particle loading onto the filter surface lowers significantly and decreases dramatically with particle size when the dusty gas flows into the filter vessel with a shroud tube through a tangential inlet setup tangentially on the vessel outer wall. However, the particle loading is considerably high when the dusty gas enters the filter vessel through a normal inlet setup vertically on the vessel top wall, and the decrease of the particle loading with particle size is not steeper compared with the tangential inflow pattern.

키워드

과제정보

연구 과제 주관 기관 : 석탄 IGCC 사업단

참고문헌

  1. Joshi, M. M. and Lee, S., "Integrated Gasification Combined Cycle, A review of IGCC Technology," Energy Sources 18(5), 537-568(1996) https://doi.org/10.1080/00908319608908789
  2. Smith, D. H. and Ahmadi. G., "Problems and Progress in Hot-Gas Filtration for Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC)," Aerosol Sci. Technol. 29(3), 163-169(1998) https://doi.org/10.1080/02786829808965561
  3. Ahmadi, G. and Smith, D. H., "Gas Flow and Particle Deposition in the Hot Gas Filter Vessel at the Tidd 70 MWE PFBC Demonstration Power Plant," Aerosol Sci. Technol. 29(3), 206-223(1998) https://doi.org/10.1080/02786829808965564
  4. Zhang, H. and Ahmadi. G., "Particle Transport and Deposition in the Hot-Gas Filter Vessel at Wilsonville," Powder Technol., 116(1), 53-68(2001) https://doi.org/10.1016/S0032-5910(00)00361-2
  5. Ahmadi, G. and Smith, D. H., "Gas Flow and Particle Deposition in the Hot-Gas Filter Vessel of the Pinon Pine Project," Powder Technol., 128(1), 1-10(2002) https://doi.org/10.1016/S0032-5910(02)00166-3
  6. Yakhot, V. and Orszag, S. A., "Renormalization Group Analysis of Turbulence - I: Basic Theory," J. Scientific Computing, 1(1), 1-51(1986) https://doi.org/10.1007/BF01061451
  7. Fletcher, C. A. J., Computational Techniques for Fluid Dynamics 1, Springer-Verlag Berlin Heidelberg(1988)