DOI QR코드

DOI QR Code

Microsatellite Markers Linked to Quantitative Trait Loci Affecting Fatness in Divergently Selected Chicken Lines for Abdominal Fat

  • Zhang, Hui (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Wang, Shouzhi (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Li, Hui (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Yu, Xijiang (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Li, Ning (National Laboratories for Agribiotechnology, China Agricultural University) ;
  • Zhang, Qin (College of Animal Science and Technology, China Agricultural University) ;
  • Liu, Xiaofeng (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Wang, Qigui (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Hu, Xiaoxiang (National Laboratories for Agribiotechnology, China Agricultural University) ;
  • Wang, Yuxiang (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Tang, Zhiquan (College of Animal Science and Technology, Northeast Agricultural University)
  • Received : 2007.12.17
  • Accepted : 2008.04.23
  • Published : 2008.10.01

Abstract

Abdominal fat characters are complex and economically important in the poultry industry. Their selection may benefit from the implementation of marker-assisted selection (MAS). The objective of this study was to identify the markers linked to QTL responsible for fatness traits. The Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) were used in the study. A total of 596 individuals from the divergent tails from the 6th to the 10th generations were genotyped at 23 microsatellite markers on chromosome 1. The differences of allele frequencies of all marker alleles between the divergent tails across the five generations were recorded. The allele frequencies of five markers, including LEI0209, LEI0146, MCW0036, ADL328 and MCW0115, had significant differences between the two tails in all five generations. The resulting p-values using Fisher's exact test on eleven markers, containing MCW248, MCW0010, MCW0106, LEI0252, LEI0068, MCW0018, MCW0061, LEI0088, MCW200, MCW283 and ROS0025, had a decreasing tendency from the 6th to the 10th generation. Statistical analysis showed that polymorphisms of the eight markers, including LEI0209, LEI0146, ROS0025, MCW0115, MCW0010, MCW0036, MCW283, ADL328, were significantly (p<0.0011) or suggestively (p<0.05) associated with abdominal fat content (AFW and AFP) across generations. It is concluded that the eight markers could be associated with the QTL affecting the deposition of abdominal fat in broiler chickens.

Keywords

References

  1. Beckman, J. S. and M. Soller. 1983. Restriction fragment length polymorphisms in genetic improvement-methodologies, mapping and costs. Theor. Appl. Genet. 67:35-43. https://doi.org/10.1007/BF00303919
  2. Boldman, K. and D. V. Vleck. 2002. MTDFREML manual, United States Department of Agriculture, USA.
  3. Carlborg, O., P. M. Hocking, D. W. Burt and C. S. Haley. 2004. Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet. Res. 83:197-209. https://doi.org/10.1017/S0016672304006779
  4. Dekkers, J. C. M. and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nature 3:22-32. https://doi.org/10.1038/003022a0
  5. de Koning, D. J., D. Windsor, P. M. Hocking, D. W. Burt, A. Law, C. S. Haley, A. Morris, J. Vincent and H. Griffin. 2003. Quantitative trait locus detection in commercial broiler lines using candidate regions. J. Anim. Sci. 81:1158-1165. https://doi.org/10.2527/2003.8151158x
  6. Dunnington, E. A., A. Haberfeld, L. C. Stallard, P. B. Siegel and J. Hillel. 1992. Deoxyribonucleic-acid fingerprint bands linked to loci coding for quantitative traits in chickens. Poult. Sci. 71:1251-1258. https://doi.org/10.3382/ps.0711251
  7. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. Longman: New York.
  8. Haley, C. S. and S. A. Knott. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315-324. https://doi.org/10.1038/hdy.1992.131
  9. Hillel, J. 2004. Detection of production trait loci in the chicken genome. Animal Science Papers and Reports 1:89-93.
  10. Jennen, D. G. J. 2004. Chicken fatness: From QTL to candidate gene. PhD Diss. Wageningen University, The Netherlands.
  11. Jennen, D. G., A. L. Vereijken, H. Bovenhuis, R. P. Crooijmans, A. Veenendaal, J. J. van der Poel and M. A. Groenen. 2004. Detection and localization of quantitative trait loci affecting fatness in broilers. Poult. Sci. 83:295-301. https://doi.org/10.1093/ps/83.3.295
  12. Jennen, D. G. J., A. L. J. Vereijken, H. Bovenhuis, R. P. M. A. Crooijmans, J. J. der Poel, J. J. van der and M. A. M. Groenen. 2005. Confirmation of quantitative trait loci affecting fatness in chickens. Genet. Sel. Evol. 37:215-228. https://doi.org/10.1186/1297-9686-37-3-215
  13. Lagarrigue, S., F. Petel, W. Carre, B. Abstht, P. Le Roy, A. Neau, Y. Amigues, M. Sourdioux, J. Simon, L. Cogburn, S. Aggrey, B. Leclercq, A. Vignal and M. Douaire. 2006. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38:85-97. https://doi.org/10.1186/1297-9686-38-1-85
  14. Lander, E. and L. Kruglyak. 1995. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241-247. https://doi.org/10.1038/ng1195-241
  15. Liu, X., H. Li, S. Wang, X. Hu, Y. Gao, Q. Wang, N. Li, Y. Wang and H. Zhang. 2007. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86:1084-1089. https://doi.org/10.1093/ps/86.6.1084
  16. National Research Council 1994. Nutrient requirements of poultry. Natl. Acad. Press, Washington, DC.
  17. Nones, K., M. C. Ledur, D. C. Ruy, E. E. Baron, C. M. R. Melo, A. S. Moura, E. L. Zanella, D. W. Burt and L. L. Coutinho. 2005. Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100. https://doi.org/10.1111/j.1365-2052.2005.01387.x
  18. Plotsky, Y., A. Cahaner, A. Haberfeld, U. Lavi, S. J. Lamont and J. Hillel. 1993. DNA fingerprint bands applied to linkage analysis with quantitative trait loci in chickens. Anim. Genet. 24:105-110. https://doi.org/10.1111/j.1365-2052.1993.tb00249.x
  19. SAS Institute Inc. 2002. JMP User's Guide. Cary, NC: SAS Institute Inc.
  20. Sasaki, O., S. Odawara, H. Takahashi, K. Nirasawa, Y. Oyamada, R. Yamamoto, K. Ishii, Y. Nagamine, H. Takeda, E. Kobayashi and T. Furukawa. 2004. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35:188-194. https://doi.org/10.1111/j.1365-2052.2004.01133.x
  21. Schreiweis, M. A., P. Y. Hester and D. E. Moody. 2005. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet. Sel. Evol. 37:677-698. https://doi.org/10.1186/1297-9686-37-7-677
  22. Siwek, M., S. J. Cornelissen, A. J. Buitenhuis, M. G. Nieuwland, H. Bovenhuis, R. P. Crooijmans, M. A. Groenen, H. K. Parmentier and J. J. van der Poel. 2004. Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83:853-859. https://doi.org/10.1093/ps/83.6.853
  23. Tatsuda, K. and K. Fujinaka. 2001. Genetic mapping of the QTL affecting body weight in chickens using a F2 family. Br. Poult. Sci. 42:333-337. https://doi.org/10.1080/00071660120055296
  24. van Kaam, J. B., J. A. van Arendonk, M. A. Groenen, H. Bovenhuis, A. L. Vereijken, R. Crooijmans, J. J. van der Poel and A. Veenendaal. 1998. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livest. Prod. Sci. 54:133-150. https://doi.org/10.1016/S0301-6226(97)00171-1
  25. van Kaam, J. B., M. A. Groenen, H. Bovenhuis, A. Veenendaal, A. L. Vereijken and J. A. van Arendonk. 1999. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poult. Sci. 78:15-23. https://doi.org/10.1093/ps/78.1.15
  26. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwell and S. J. Lamont. 2006. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body Composition. Poult. Sci. 85:1712-1721. https://doi.org/10.1093/ps/85.10.1712
  27. Zhu, J. J., H. S. Lillehoj, P. C. Allen, C. P. Van Tassell, T. S. Sonstegard, H. H. Cheng, D. Pollock, M. Sadjadi, W. Min and M. G. Emara. 2003. Mapping quantitative trait loci associated with resistance to coccidiosis and growth. Poult. Sci. 82:9-16. https://doi.org/10.1093/ps/82.1.9

Cited by

  1. Broiler breeding strategies over the decades: an overview vol.67, pp.02, 2011, https://doi.org/10.1017/S0043933911000328
  2. Epistatic effect between ACACA and FABP2 gene on abdominal fat traits in broilers vol.37, pp.8, 2008, https://doi.org/10.1016/s1673-8527(09)60070-9