DOI QR코드

DOI QR Code

Role of apoptotic and necrotic cell death under physiologic conditions

  • Han, Song-Iy (Research Center for Resistant Cells, Chosun University School of Medicine) ;
  • Kim, Yong-Seok (Department of Surgery, Chung-Ang Unviersity College of Medicine, Yong-San Hospital) ;
  • Kim, Tae-Hyoung (Research Center for Resistant Cells, Chosun University School of Medicine)
  • Published : 2008.01.31

Abstract

Surgery, Chung-Ang Unviersity College of Medicine, Yong-San Hospital, Seoul, Korea Apoptosis is considered to be a programmed and controlled mode of cell death, whereas necrosis has long been described as uncontrolled and accidental cell death resulting from extremely harsh conditions. In the following review, we will discuss the features and physiological meanings as well as recent advances in the elucidation of the signaling pathways of both apoptotic cell death and programmed necrotic cell death.

Keywords

References

  1. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  2. Danial, N. N., and Korsmeyer, S. J. (2004) Cell death: critical control points. Cell 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  3. Scaffidi, P., Misteli, T., and Bianchi, M. E. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195. https://doi.org/10.1038/nature00858
  4. Dumitriu, I. E., Baruah, P., Manfredi, A. A., Bianchi, M. E., and Rovere-Querini, P. (2005) HMGB1: guiding immunity from within. Trends Immunol. 26, 381-387. https://doi.org/10.1016/j.it.2005.04.009
  5. Vanden Berghe, T., Kalai, M., Denecker, G., Meeus, A., Saelens, X., and Vandenabeele, P. (2006) Necrosis is associated with IL-6 production but apoptosis is not. Cell. Signal 18, 328-335. https://doi.org/10.1016/j.cellsig.2005.05.003
  6. Lotze, M. T., and Tracey, K. J. (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331-342. https://doi.org/10.1038/nri1594
  7. Stefani, M., and Dobson, C. M. (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678-699. https://doi.org/10.1007/s00109-003-0464-5
  8. Jiang, W., and Pisetsky, D. S. (2007) Mechanisms of Disease: the role of high-mobility group protein 1 in the pathogenesis of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3, 52-58. https://doi.org/10.1038/ncprheum0379
  9. Allavena, P., Sica, A., Solinas, G., Porta, C., and Mantovani, A. (2007) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. in press.
  10. Tan, T. T., and Coussens, L. M. (2007) Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209-216. https://doi.org/10.1016/j.coi.2007.01.001
  11. Ashkenazi, A., and Dixit, V. M. (1999) Apoptosis control by death and decoy receptors. Curr. Opin. Cell. Biol. 11, 255-260. https://doi.org/10.1016/S0955-0674(99)80034-9
  12. El-Deiry, W. S. (2001) Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 8, 1066-1075. https://doi.org/10.1038/sj.cdd.4400943
  13. Griffith, T. S., and Lynch, D. H. (1998) TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10, 559-563. https://doi.org/10.1016/S0952-7915(98)80224-0
  14. Kim, Y., and Seol, D. W. (2003) TRAIL, a mighty apoptosis inducer. Mol. Cells 15, 283-293.
  15. Wang, S., and El-Deiry, W. S. (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628-8633. https://doi.org/10.1038/sj.onc.1207232
  16. Young, J. D., Liu, C. C., Butler, G., Cohn, Z. A., and Galli, S. J. (1987) Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc. Natl. Acad. Sci. U. S. A. 84, 9175-9179. https://doi.org/10.1073/pnas.84.24.9175
  17. Haranaka, K., Carswell, E. A., Williamson, B. D., Prendergast, J. S., Satomi, N., and Old, L. J. (1986) Purification, characterization, and antitumor activity of nonrecombinant mouse tumor necrosis factor. Proc. Natl. Acad. Sci. U. S. A. 83, 3949-3953. https://doi.org/10.1073/pnas.83.11.3949
  18. Rubin, B. Y., Anderson, S. L., Sullivan, S. A., Williamson, B. D., Carswell, E. A., and Old, L. J. (1985) Purification and characterization of a human tumor necrosis factor from the LuKII cell line. Proc. Natl. Acad. Sci. U. S. A. 82, 6637-6641. https://doi.org/10.1073/pnas.82.19.6637
  19. Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
  20. Varfolomeev, E. E., and Ashkenazi, A. (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491-497. https://doi.org/10.1016/S0092-8674(04)00166-7
  21. Hsu, H., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308. https://doi.org/10.1016/S0092-8674(00)80984-8
  22. Hsu, H., Xiong, J., and Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504. https://doi.org/10.1016/0092-8674(95)90070-5
  23. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO- 1) death-inducing signaling complex. Cell 85, 817-827. https://doi.org/10.1016/S0092-8674(00)81266-0
  24. Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D., Mentlein, R., Kabelitz, D., and Schutze, S. (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415-428.
  25. Micheau, O., and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. https://doi.org/10.1016/S0092-8674(03)00521-X
  26. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO. J. 17, 1675-1687. https://doi.org/10.1093/emboj/17.6.1675
  27. Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A., and Korsmeyer, S. J. (1999) Biddeficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891. https://doi.org/10.1038/23730
  28. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  29. Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K., and Yin, X. M. (2000) Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275, 39474-39481. https://doi.org/10.1074/jbc.M003370200
  30. LeBlanc, H. N., and Ashkenazi, A. (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 10, 66-75. https://doi.org/10.1038/sj.cdd.4401187
  31. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., and Nagata, S. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233-243. https://doi.org/10.1016/0092-8674(91)90614-5
  32. Suda, T., Takahashi, T., Golstein, P., and Nagata, S. (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169-1178. https://doi.org/10.1016/0092-8674(93)90326-L
  33. Nagata, S., and Golstein, P. (1995) The Fas death factor. Science 267, 1449-1456. https://doi.org/10.1126/science.7533326
  34. Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. https://doi.org/10.1016/0092-8674(95)90071-3
  35. Marsters, S. A., Pitti, R. M., Donahue, C. J., Ruppert, S., Bauer, K. D., and Ashkenazi, A. (1996) Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr. Biol. 6, 750-752. https://doi.org/10.1016/S0960-9822(09)00456-4
  36. Lee, K. H., Feig, C., Tchikov, V., Schickel, R., Hallas, C., Schutze, S., Peter, M. E., and Chan, A. C. (2006) The role of receptor internalization in CD95 signaling. EMBO. J. 25, 1009-1023. https://doi.org/10.1038/sj.emboj.7601016
  37. Kohlhaas, S. L., Craxton, A., Sun, X. M., Pinkoski, M. J., and Cohen, G. M. (2007) Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosisinducing ligand (TRAIL)-induced apoptosis. J. Biol. Chem. 282, 12831-12841. https://doi.org/10.1074/jbc.M700438200
  38. Austin, C. D., Lawrence, D. A., Peden, A. A., Varfolomeev, E. E., Totpal, K., De Maziere, A. M., Klumperman, J., Arnott, D., Pham, V., Scheller, R. H., and Ashkenazi, A. (2006) Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 10283-10288. https://doi.org/10.1073/pnas.0604044103
  39. Ashkenazi, A., and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305-1308. https://doi.org/10.1126/science.281.5381.1305
  40. Nagata, S. (1999) Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29-55. https://doi.org/10.1146/annurev.genet.33.1.29
  41. Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiological reviews 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
  42. Korsmeyer, S. J. (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80, 879-886.
  43. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D., and Korsmeyer, S. J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334-336. https://doi.org/10.1038/348334a0
  44. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  45. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. https://doi.org/10.1016/S0092-8674(00)00008-8
  46. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. https://doi.org/10.1016/S0092-8674(00)00009-X
  47. van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S. M., Rodriguez, I., Alnemri, E. S., Gevaert, K., Vandekerckhove, J., Declercq, W., and Vandenabeele, P. (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 9, 20-26. https://doi.org/10.1038/sj.cdd.4400970
  48. Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T., and Alnemri, E. S. (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432-438. https://doi.org/10.1074/jbc.M109721200
  49. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., Sasaki, T., Elia, A. J., Cheng, H. Y., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y. Y., Mak, T. W., Zuniga-Pflucker, J. C., Kroemer, G., and Penninger, J. M. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554 https://doi.org/10.1038/35069004
  50. Li, L. Y., Luo, X., and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. https://doi.org/10.1038/35083620
  51. Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-94. https://doi.org/10.1038/35083608
  52. Cory, S., and Adams, J. M. (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647-656. https://doi.org/10.1038/nrc883
  53. Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B., Brandt, G. S., Iwakoshi, N. N., Schinzel, A., Glimcher, L. H., and Korsmeyer, S. J. (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572-576. https://doi.org/10.1126/science.1123480
  54. Oakes, S. A., Scorrano, L., Opferman, J. T., Bassik, M. C., Nishino, M., Pozzan, T., and Korsmeyer, S. J. (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 102, 105-110. https://doi.org/10.1073/pnas.0408352102
  55. Bassik, M. C., Scorrano, L., Oakes, S. A., Pozzan, T., and Korsmeyer, S. J. (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO. J. 23, 1207-1216. https://doi.org/10.1038/sj.emboj.7600104
  56. Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., and Korsmeyer, S. J. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139. https://doi.org/10.1126/science.1081208
  57. Nechushtan, A., Smith, C. L., Hsu, Y. T., and Youle, R. J. (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO. J. 18, 2330-2341. https://doi.org/10.1093/emboj/18.9.2330
  58. Suzuki, M., Youle, R. J., and Tjandra, N. (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645-654. https://doi.org/10.1016/S0092-8674(00)00167-7
  59. Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J. (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281-1292 https://doi.org/10.1083/jcb.139.5.1281
  60. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060-2071.
  61. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. https://doi.org/10.1126/science.1059108
  62. De Marchi, U., Campello, S., Szabo, I., Tombola, F., Martinou, J. C., and Zoratti, M. (2004) Bax does not directly participate in the Ca(2+)-induced permeability transition of isolated mitochondria. J. Biol. Chem. 279, 37415-37422. https://doi.org/10.1074/jbc.M314093200
  63. Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H., and Youle, R. J. (2001) Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153, 1265-1276. https://doi.org/10.1083/jcb.153.6.1265
  64. Guo, B., Zhai, D., Cabezas, E., Welsh, K., Nouraini, S., Satterthwait, A. C., and Reed, J. C. (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423, 456-461. https://doi.org/10.1038/nature01627
  65. Ohtsuka, T., Ryu, H., Minamishima, Y. A., Macip, S., Sagara, J., Nakayama, K. I., Aaronson, S. A., and Lee, S. W. (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat. Cell Biol. 6, 121-128. https://doi.org/10.1038/ncb1087
  66. Sawada, M., Hayes, P., and Matsuyama, S. (2003) Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat. Cell Biol. 5, 352-357. https://doi.org/10.1038/ncb955
  67. Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol. 5, 320-329. https://doi.org/10.1038/ncb950
  68. Ruffolo, S. C., and Shore, G. C. (2003) BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J. Biol. Chem. 278, 25039-25045. https://doi.org/10.1074/jbc.M302930200
  69. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M., and Huang, D. C. (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393-403. https://doi.org/10.1016/j.molcel.2004.12.030
  70. Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., Green, D. R., and Newmeyer, D. D. (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525-535. https://doi.org/10.1016/j.molcel.2005.02.003
  71. Kim, H., Rafiuddin-Shah, M., Tu, H. C., Jeffers, J. R., Zambetti, G. P., Hsieh, J. J., and Cheng, E. H. (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol. 8, 1348-1358. https://doi.org/10.1038/ncb1499
  72. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer, S. J. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192. https://doi.org/10.1016/S1535-6108(02)00127-7
  73. Deng, J., Carlson, N., Takeyama, K., Dal Cin, P., Shipp, M., and Letai, A. (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171-185. https://doi.org/10.1016/j.ccr.2007.07.001
  74. Wells, J. A., and McClendon, C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001-1009. https://doi.org/10.1038/nature06526
  75. van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Cory, S., Adams, J. M., Roberts, A. W., and Huang, D. C. (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389-399. https://doi.org/10.1016/j.ccr.2006.08.027
  76. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y., and Youle, R. J. (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. https://doi.org/10.1038/nature05111
  77. Youle, R. J., and Karbowski, M. (2005) Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6, 657-663. https://doi.org/10.1038/nrmicro1955
  78. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515-525. https://doi.org/10.1016/S1534-5807(01)00055-7
  79. Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C. L., and Youle, R. J. (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931-938.
  80. Arnoult, D. (2007) Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 17, 6-12 https://doi.org/10.1016/j.tcb.2006.11.001
  81. Smirnova, E., Shurland, D. L., Ryazantsev, S. N., and van der Bliek, A. M. (1998) A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351-358. https://doi.org/10.1083/jcb.143.2.351
  82. Karbowski, M., and Youle, R. J. (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10, 870-880. https://doi.org/10.1038/sj.cdd.4401260
  83. van der Bliek, A. M. (2000) A mitochondrial division apparatus takes shape. J. Cell Biol. 151, F1-4. https://doi.org/10.1083/jcb.151.1.1
  84. James, D. I., Parone, P. A., Mattenberger, Y., and Martinou, J. C. (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373-36379. https://doi.org/10.1074/jbc.M303758200
  85. Stojanovski, D., Koutsopoulos, O. S., Okamoto, K., and Ryan, M. T. (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117, 1201-1210. https://doi.org/10.1242/jcs.01058
  86. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L., and Youle, R. J. (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001-5011. https://doi.org/10.1091/mbc.E04-04-0294
  87. Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G. V., Rudka, T., Bartoli, D., Polishuck, R. S., Danial, N. N., De Strooper, B., and Scorrano, L. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189. https://doi.org/10.1016/j.cell.2006.06.025
  88. Arnoult, D., Grodet, A., Lee, Y. J., Estaquier, J., and Blackstone, C. (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742-35750. https://doi.org/10.1074/jbc.M505970200
  89. Arnoult, D., Rismanchi, N., Grodet, A., Roberts, R. G., Seeburg, D. P., Estaquier, J., Sheng, M., and Blackstone, C. (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr. Biol. 15, 2112-2118. https://doi.org/10.1016/j.cub.2005.10.041
  90. Sugioka, R., Shimizu, S., and Tsujimoto, Y. (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279, 52726-52734. https://doi.org/10.1074/jbc.M408910200
  91. Esseiva, A. C., Chanez, A. L., Bochud-Allemann, N., Martinou, J. C., Hemphill, A., and Schneider, A. (2004) Temporal dissection of Bax-induced events leading to fission of the single mitochondrion in Trypanosoma brucei. EMBO reports 5, 268-273. https://doi.org/10.1038/sj.embor.7400095
  92. Mancini, M., Anderson, B. O., Caldwell, E., Sedghinasab, M., Paty, P. B., and Hockenbery, D. M. (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J. Cell Biol. 138, 449-469. https://doi.org/10.1083/jcb.138.2.449
  93. Alirol, E., James, D., Huber, D., Marchetto, A., Vergani, L., Martinou, J. C., and Scorrano, L. (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol. Biol. Cell 17, 4593-4605. https://doi.org/10.1091/mbc.E06-05-0377
  94. Olichon, A., Emorine, L. J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C. P., Ducommun, B., Lenaers, G., and Belenguer, P. (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171-176. https://doi.org/10.1016/S0014-5793(02)02985-X
  95. Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D'Adamio, L., Derks, C., Dejaegere, T., Pellegrini, L., D'Hooge, R., Scorrano, L., and De Strooper, B. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163-175. https://doi.org/10.1016/j.cell.2006.06.021
  96. Pellegrini, L., and Scorrano, L. (2007) A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ. 14, 1275-1284 https://doi.org/10.1038/sj.cdd.4402145
  97. Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S. A., Mannella, C. A., and Korsmeyer, S. J. (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55-67. https://doi.org/10.1016/S1534-5807(01)00116-2
  98. Kanduc, D., Mittelman, A., Serpico, R., Sinigaglia, E., Sinha, A. A., Natale, C., Santacroce, R., Di Corcia, M. G., Lucchese, A., Dini, L., Pani, P., Santacroce, S., Simone, S., Bucci, R., and Farber, E. (2002) Cell death: apoptosis versus necrosis (review). Int. J. Oncol. 21, 165-170.
  99. Kim, J. S., He, L., and Lemasters, J. J. (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 304, 463-470. https://doi.org/10.1016/S0006-291X(03)00618-1
  100. Syntichaki, P., and Tavernarakis, N. (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO reports 3, 604-609. https://doi.org/10.1093/embo-reports/kvf138
  101. Proskuryakov, S. Y., Gabai, V. L., and Konoplyannikov, A. G. (2002) Necrosis is an active and controlled form of programmed cell death. Biochemistry 67, 387-408. https://doi.org/10.1023/A:1015289521275
  102. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272-1282. https://doi.org/10.1101/gad.1199904
  103. Wilson, C. A., and Browning, J. L. (2002) Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ. 9, 1321-1333. https://doi.org/10.1038/sj.cdd.4401107
  104. Vanden Berghe, T., van Loo, G., Saelens, X., Van Gurp, M., Brouckaert, G., Kalai, M., Declercq, W., and Vandenabeele, P. (2004) Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J. Biol. Chem. 279, 7925-7933. https://doi.org/10.1074/jbc.M307807200
  105. Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn, G. W., Robbins, J., and Molkentin, J. D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662. https://doi.org/10.1038/nature03434
  106. Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652-658. https://doi.org/10.1038/nature03317
  107. Hetz, C. A., Hunn, M., Rojas, P., Torres, V., Leyton, L., and Quest, A. F. (2002) Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J. Cell Sci. 115, 4671-4683. https://doi.org/10.1242/jcs.00153
  108. Meurette, O., Rebillard, A., Huc, L., Le Moigne, G., Merino, D., Micheau, O., Lagadic-Gossmann, D., and Dimanche-Boitrel, M. T. (2007) TRAIL induces receptorinteracting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res. 67, 218-226. https://doi.org/10.1158/0008-5472.CAN-06-1610
  109. Saelens, X., Festjens, N., Parthoens, E., Vanoverberghe, I., Kalai, M., van Kuppeveld, F., and Vandenabeele, P. (2005) Protein synthesis persists during necrotic cell death. J. Cell Biol. 168, 545-551. https://doi.org/10.1083/jcb.200407162
  110. Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W., and Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278, 5622-5629. https://doi.org/10.1074/jbc.M208925200
  111. Kim, C. H., Han, S. I., Lee, S. Y., Youk, H. S., Moon, J. Y., Duong, H. Q., Park, M. J., Joo, Y. M., Park, H. G., Kim, Y. J., Yoo, M. A., Lim, S. C., and Kang, H. S. (2007) Protein kinase C-ERK1/2 signal pathway switches glucose depletion-induced necrosis to apoptosis by regulating superoxide dismutases and suppressing reactive oxygen species production in A549 lung cancer cells. J. Cell Physiol. 211, 371-385. https://doi.org/10.1002/jcp.20941
  112. Lim, S. C., Choi, J. E., Kim, C. H., Duong, H. Q., Jeong, G. A., Kang, H. S., and Han, S. I. (2007) Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Int. J. Mol. Med. 20, 187-192.
  113. Lemasters, J. J. (1999) V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol. 276, G1-6.
  114. Zong, W. X., and Thompson, C. B. (2006) Necrotic death as a cell fate. Genes. Dev. 20, 1-15. https://doi.org/10.1101/gad.1376506
  115. Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., Moroni, F., and Chiarugi, A. (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J. Neurochem. 103, 590-603. https://doi.org/10.1111/j.1471-4159.2007.04788.x
  116. El Mezayen, R., El Gazzar, M., Seeds, M. C., McCall, C. E., Dreskin, S. C., and Nicolls, M. R. (2007) Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunology Letters 111, 36-44. https://doi.org/10.1016/j.imlet.2007.04.011
  117. El Gazzar, M. (2007) HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm. Res. 56, 162-167. https://doi.org/10.1007/s00011-006-6112-0
  118. Jolly, C., and Morimoto, R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Nat. Cancer Inst. 92, 1564-1572. https://doi.org/10.1093/jnci/92.19.1564
  119. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N. (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423-434. https://doi.org/10.1084/jem.191.3.423
  120. Srivastava, P. (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185-194. https://doi.org/10.1038/nri749
  121. Erlandsson Harris, H., and Andersson, U. (2004) Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur. J. Immunol. 34, 1503-1512. https://doi.org/10.1002/eji.200424916
  122. Blanco, D., Vicent, S., Fraga, M. F., Fernandez-Garcia, I., Freire, J., Lujambio, A., Esteller, M., Ortiz-de-Solorzano, C., Pio, R., Lecanda, F., and Montuenga, L. M. (2007) Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia (New York, N.Y) 9, 840-852. https://doi.org/10.1593/neo.07517
  123. Malkinson, A. M., Bauer, A., Meyer, A., Dwyer-Nield, L., Koski, K., Keith, R., Geraci, M., and Miller, Y. (2000) Experimental evidence from an animal model of adenocarcinoma that chronic inflammation enhances lung cancer risk. Chest 117, 228S. https://doi.org/10.1378/chest.117.5_suppl_1.228S
  124. Santiago, C., Pagan, B., Isidro, A. A., and Appleyard, C. B. (2007) Prolonged chronic inflammation progresses to dysplasia in a novel rat model of colitis-associated colon cancer. Cancer Res. 67, 10766-10773. https://doi.org/10.1158/0008-5472.CAN-07-1418
  125. Ernst, P. (1999) Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment. Pharmacol. Ther. 13 Suppl 1, 13-18. https://doi.org/10.1046/j.1365-2036.1999.00003.x
  126. Farrow, B., and Evers, B. M. (2002) Inflammation and the development of pancreatic cancer. Surg. Oncol. 10, 153-169. https://doi.org/10.1016/S0960-7404(02)00015-4
  127. Martey, C. A., Pollock, S. J., Turner, C. K., O'Reilly, K. M., Baglole, C. J., Phipps, R. P., and Sime, P. J. (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am. J. Physiol. 287, L981-991. https://doi.org/10.1152/ajpcell.00085.2004
  128. Hemmerich, S. (2001) Carbohydrate sulfotransferases: novel therapeutic targets for inflammation, viral infection and cancer. Drug. Discov. Today 6, 27-35.
  129. Vakkila, J., and Lotze, M. T. (2004) Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641-648. https://doi.org/10.1038/nri1415
  130. Meurette, O., Huc, L., Rebillard, A., Le Moigne, G., Lagadic-Gossmann, D., and Dimanche-Boitrel, M. T. (2005) TRAIL (TNF-related apoptosis-inducing ligand) induces necrosis-like cell death in tumor cells at acidic extracellular pH. Ann. N. Y. Acad, Sci. 1056, 379-387. https://doi.org/10.1196/annals.1352.018
  131. Bertazza, L., and Mocellin, S. (2008) Tumor necrosis factor (TNF) biology and cell death. Front. Biosci. 13, 2736-2743. https://doi.org/10.2741/2881
  132. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., and Tschopp, J. (2000) Fas triggers an alternative, caspase- 8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495. https://doi.org/10.1038/82732
  133. Bianchi, L., Gerstbrein, B., Frokjaer-Jensen, C., Royal, D. C., Mukherjee, G., Royal, M. A., Xue, J., Schafer, W. R., and Driscoll, M. (2004) The neurotoxic MEC-4(d) DEG/ ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337-1344. https://doi.org/10.1038/nn1347
  134. McConkey, D. J., and Orrenius, S. (1996) Signal transduction pathways in apoptosis. Stem Cells (Dayton, Ohio) 14, 619-631. https://doi.org/10.1002/stem.140619
  135. Schwab, B. L., Guerini, D., Didszun, C., Bano, D., Ferrando-May, E., Fava, E., Tam, J., Xu, D., Xanthoudakis, S., Nicholson, D. W., Carafoli, E., and Nicotera, P. (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9, 818-831. https://doi.org/10.1038/sj.cdd.4401042
  136. Jin, X., Zhang, Z., Beer-Stolz, D., Zimmers, T. A., and Koniaris, L. G. (2007) Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology 46, 802-812. https://doi.org/10.1002/hep.21728
  137. Kim, Y. S., Morgan, M. J., Choksi, S., and Liu, Z. G. (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687. https://doi.org/10.1016/j.molcel.2007.04.021
  138. Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L., and Moshage, H. (2006) Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J. Hepatol. 44, 918-929. https://doi.org/10.1016/j.jhep.2005.07.034
  139. Zhang, S., Lin, Y., Kim, Y. S., Hande, M. P., Liu, Z. G., and Shen, H. M. (2007) c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ. 14, 1001-1010.

Cited by

  1. Induction of Apoptosis by Ethanol Extracts of Ganoderma lucidum in Human Gastric Carcinoma Cells vol.3, pp.1, 2010, https://doi.org/10.1016/S2005-2901(10)60004-0
  2. p-Methoxycinnamic acid, an active phenylpropanoid induces mitochondrial mediated apoptosis in HCT-116 human colon adenocarcinoma cell line vol.40, pp.3, 2015, https://doi.org/10.1016/j.etap.2015.09.013
  3. Apoptosis induction of human leukemia U937 cells by gomisin N, a dibenzocyclooctadiene lignan, isolated from Schizandra chinensis Baill vol.48, pp.3, 2010, https://doi.org/10.1016/j.fct.2009.12.012
  4. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells vol.761, 2014, https://doi.org/10.1016/j.mrgentox.2014.01.004
  5. Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells vol.88, 2017, https://doi.org/10.1016/j.biopha.2017.01.113
  6. Discriminative cytotoxicity assessment based on various cellular damages vol.184, pp.1, 2009, https://doi.org/10.1016/j.toxlet.2008.10.006
  7. FoxO3a mediates transforming growth factor-β1-induced apoptosis in FaO rat hepatoma cells vol.41, pp.10, 2008, https://doi.org/10.5483/BMBRep.2008.41.10.728
  8. Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., vol.25, pp.5, 2015, https://doi.org/10.5352/JLS.2015.25.5.607
  9. Anti-oxidative and Anti-cancer Activities of Treculia africana Extract in Human Colon Adenocarcinoma HT29 Cells vol.25, pp.5, 2015, https://doi.org/10.5352/JLS.2015.25.5.515
  10. Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1109
  11. Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.840
  12. Induction of Apoptosis by Pachymic Acid in T24 Human Bladder Cancer Cells vol.25, pp.1, 2015, https://doi.org/10.5352/JLS.2015.25.1.93
  13. Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects vol.76, pp.11, 2008, https://doi.org/10.1016/j.bcp.2008.07.013
  14. Controlled Necrosis vol.4, pp.1, 2010, https://doi.org/10.1134/S1990747810010022
  15. Induction of apoptosis by streptochlorin isolated from Streptomyces sp. in human leukemic U937 cells vol.22, pp.6, 2008, https://doi.org/10.1016/j.tiv.2008.06.010
  16. Apoptotic Effect of ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on MIA PaCa-2 Cells vol.27, pp.4, 2014, https://doi.org/10.6114/jkood.2014.27.4.158
  17. Apoptosis-Induced Effects of Extract from Artemisia annua Linné by Modulating Akt/mTOR/GSK-3β Signal Pathway in AGS Human Gastric Carcinoma Cells vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1257
  18. Soy soluble polysaccharide induces apoptosis in HCT-116 human colon cancer cells via reactive oxygen species generation vol.8, pp.6, 2013, https://doi.org/10.3892/mmr.2013.1725
  19. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis vol.10, pp.12, 2012, https://doi.org/10.3390/md10102181
  20. Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.518
  21. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles vol.21, pp.37, 2010, https://doi.org/10.1088/0957-4484/21/37/375102
  22. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris vol.47, pp.7, 2009, https://doi.org/10.1016/j.fct.2009.04.014
  23. Tricyclic Antidepressants Amitriptyline and Desipramine Induced Neurotoxicity Associated with Parkinson’s Disease vol.38, pp.8, 2015, https://doi.org/10.14348/molcells.2015.0131
  24. Aerobic exercise blocks interleukin-6 levels and germ cell apoptosis in obese rats 2018, https://doi.org/10.1111/and.12880
  25. Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1363
  26. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro vol.24, pp.7, 2010, https://doi.org/10.1016/j.tiv.2010.08.001
  27. Induction of Growth Inhibition and Apoptosis in Human Cancer Cells by a Brown Algae Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.555
  28. Interplay between autophagy and programmed cell death in mammalian neural stem cells vol.46, pp.8, 2013, https://doi.org/10.5483/BMBRep.2013.46.8.164
  29. Flavonoids isolated from Citrus platymamma induce mitochondrial-dependent apoptosis in AGS cells by modulation of the PI3K/AKT and MAPK pathways vol.34, pp.3, 2015, https://doi.org/10.3892/or.2015.4122
  30. Apoptosis Induction of Human Lung Carcinoma Cells by Chan Su (Venenum Bufonis) Through Activation of Caspases vol.2, pp.3, 2009, https://doi.org/10.1016/S2005-2901(09)60057-1
  31. Diferuloylputrescine, a Predominant Phenolic Amide in Corn Bran, Potently Induces Apoptosis in Human Leukemia U937 Cells vol.17, pp.5, 2014, https://doi.org/10.1089/jmf.2013.2913
  32. Gli2 silencing enhances TRAIL-induced apoptosis and reduces tumor growth in human hepatoma cells in vivo vol.15, pp.12, 2014, https://doi.org/10.4161/15384047.2014.972286
  33. Induction of Apoptosis by Ethanol Extract of Cnidium officinale in Human Leukemia U937 Cells through Activation of AMPK vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1255
  34. Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells vol.22, pp.6, 2012, https://doi.org/10.5352/JLS.2012.22.6.815
  35. Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells vol.52, pp.5, 2014, https://doi.org/10.3109/13880209.2013.850517
  36. Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells vol.26, pp.4, 2016, https://doi.org/10.5352/JLS.2016.26.4.431
  37. Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes 2017, https://doi.org/10.1002/tox.22458
  38. shRNA-mediated silencing of Gli2 gene inhibits proliferation and sensitizes human hepatocellular carcinoma cells towards TRAIL-induced apoptosis vol.112, pp.11, 2011, https://doi.org/10.1002/jcb.23240
  39. Induction of the cell cycle arrest and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells vol.135, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2012.06.097
  40. Pro-apoptotic Effects of Platycodin D Isolated from Platycodon grandiflorum in Human Leukemia Cells vol.23, pp.3, 2013, https://doi.org/10.5352/JLS.2013.23.3.389
  41. Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells vol.180, pp.2, 2009, https://doi.org/10.1016/j.cbi.2009.03.020
  42. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions vol.107, 2014, https://doi.org/10.1016/j.carbpol.2014.02.039
  43. Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus for modulation of the signaling pathway in HepG2 human hepatoma cells vol.23, pp.1, 2014, https://doi.org/10.1007/s10068-014-0037-0
  44. Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells vol.25, pp.8, 2015, https://doi.org/10.5352/JLS.2015.25.8.849
  45. Mitochondrial targeting domain of NOXA causes necrosis in apoptosis-resistant tumor cells pp.1438-2199, 2018, https://doi.org/10.1007/s00726-018-2644-1
  46. Biochromic silole derivatives: a single dye for differentiation, quantitation and imaging of live/dead cells vol.5, pp.5, 2018, https://doi.org/10.1039/C8MH00799C
  47. The effects and mechanism of peiminine-induced apoptosis in human hepatocellular carcinoma HepG2 cells vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0201864