DOI QR코드

DOI QR Code

Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean Native Cattle) steers

  • Lee, Seung-Hwan (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Cho, Yong-Min (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Lee, Sang-Hong (Genetic Improvement and Evaluatiion Division, National Institute of Animal Science, RDA) ;
  • Kim, Bum-Soo (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Kim, Nam-Kuk (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Choy, Yeon-Ho (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Kyoung-Hoon (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Yoon, Du-Hak (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Im, Seok-Ki (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Oh, Sung-Jong (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA)) ;
  • Park, Eung-Woo (Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA))
  • Published : 2008.12.31

Abstract

This study was conducted to identify marbling-related candidate genes in M. longissimus dorsi of high- and low-marbled Hanwoo. The longissimus dorsi muscles were selected for gene expression from eight Hanwoo steer carcasses based on crude fat content. In the analysis of variance, gene expression of five candidate genes, FABP4, SCD, $PPAR\gamma$, Titin and Nebulin was determined to be significantly different between high- and low-marbled Hanwoo steers (P < 0.0001). The Pik-4 and CaMK II genes were also shown to have a significant effect on crude fat content (P < 0.01). In the analysis of the differential expression between high- and low marbled groups, FABP4 gene expression was approximately 2 times higher in the high marbled group relative to the low marbled group. However, the $PPAR\gamma$ and SCD gene were highly expressed in the low marbled group. In addition, Titin and Nebulin were highly expressed in the low marbled group when placed under relatively high shear force. Finally, the Pik-4 and CaM K II gene also displayed a high expression pattern in the low marbled group.

Keywords

References

  1. Pethick, D. W., Harper, G. S., Hocquette, J. F. and Wang, Y. H. (2006) Marbling biology-what do we know about getting fat into muscle? Australian Beef-the Leader Conference. PP. 103-110, Australia.
  2. Hong, S. K. (1998). Annual Report for Hanwoo Research, RDA, Korea.
  3. Hocquette, J. F., Jurie, C., Ueda, Y., Boulesteix, P., Bauchart, D. and Pethick, D. W. (2003) The relationship between muscle metabolic pathways and marbling of beef. Progress in Research on Energy and Protein Metabolism. PP. 513-516, Wageningen, Netherlands.
  4. Lee, S. H., Park, E. W., Cho, Y. M., Kim, K. H., Oh, Y. K., Lee, J. H., Lee, C. S., Oh, S. J. and Yoon, D. (2006) Lipogenesis gene expression profiling on the early and late fattening stage of Hanwoo longissimus dorsi. J. Anim. Sci. & Technol (Korean). 48, 913-920. https://doi.org/10.5187/JAST.2006.48.3.345
  5. Lee, S. H., Park, E. W., Cho, Y. M., Kim, S. K., Lee, J. H., Jeon, J. T., Lee, C. S., Im, S. K., Oh, S. J., Thompson, J. M. and Yoon, D. (2007) Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of Hanwoo steers. J. Biochem. Mol. Biol. 40, 757-764. https://doi.org/10.5483/BMBRep.2007.40.5.757
  6. Harper, G. S. and Pethick, D. W. (2004) How might marbling begin? Aust. J. Exp. Agri. 44, 653-662 https://doi.org/10.1071/EA02114
  7. Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A. and Tsuji, S. (2004) Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome. 14, 142-148.
  8. Yang, A., Larsen, T. W., Smith, S. B. and Tume, R. K. (1999) $\Delta$9 desaturase activity in bovine subcutaneous adipose tissue of different fatty acid composition. Lipids. 34, 917-978.
  9. Damcott, C. M., Moffett, S. P., Feingold, E., Barmada, M. M., Marshall, J. A., Hamman, R. F. and Ferrell, R. E. (2004) Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor gamma interactively influence insulin sensitivity and body composition in males. Metabolism. 53, 303-309. https://doi.org/10.1016/j.metabol.2003.10.010
  10. Cho, S., Park, T. S., Yoon, D., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H. and Shin, H. D. (2008) Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB reports. 41, 29-34. https://doi.org/10.5483/BMBRep.2008.41.1.029
  11. Wang, Y. H., Byrne, K. A., Reverter, A., Harper, G. S., Taniguchi, M., McWilliam, S. M., Mannen, H., Oyama, K. and Lehnert, S. A. (2005) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome. 16, 201-210. https://doi.org/10.1007/s00335-004-2419-8
  12. Michal, J. J., Zhang, Z. W., Gaskins, C. T. and Jiang, Z. (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu $\times$ Limousin F2 crosses. Anim.Genet. 37, 400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x
  13. Park, E.W., Yoon, D., Lee, S. H., Cho, Y. M., Lee, J. H., Jeon, J. T., Lee, J. H., Cheong, I. C. and Oh, S. J. (2006) Identification of single nucleotide polymorphism for the adipocyte fatty acid binding protein (FABP4) and its SNPs is associated with marbling score in Hanwoo steers. Proceedings of the 30th International Conference on Animal Genetics, D 422.
  14. Stedman, H., Browning, K., Oliver, N., Oronzi-Scott, M., Fischbeck, K., Sarkar, S., Sylvester, J., Schmickel, R. and Wang, K. (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics. 2, 1-7. https://doi.org/10.1016/0888-7543(88)90102-4
  15. Mayans, O., van der Ven, P. F., Wilm, M. M. A., Young, P., Furst, D. O., Wilmanns, M. and Gautel, M. (1998) Structural basis for activation of the titin kinase domain during Myofibrillogenesis. Nature. 395, 863-869. https://doi.org/10.1038/27603
  16. Anderson, M. S. and Kunkel, L. M. (1992) The molecular and biochemical basis of Duchenne muscular dystrophy. Trends. Biochem. Sci. 17, 289-292. https://doi.org/10.1016/0968-0004(92)90437-E
  17. Light, N., Champion, A. E., Voyle, C. and Bailey, A. J. (1985) The Role of Epimysial, Peri-mysial and Endomysial Collagen in Determining Texture in Six Bovine Muscles. Meat Science 13, 137-149. https://doi.org/10.1016/0309-1740(85)90054-3
  18. Schrauwen, P. (2007) High-fat diet, muscular lipotoxicity and insulin resistance. Proc. Nutr. Soc. 66, 33-41.
  19. Wu, H., Kanatous, S. B., Thurmond, F. A., Gallardo, T., Isotani, E., Bassel-Duby, R. and Williams, R. S. (2002) Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science. 296, 349-352. https://doi.org/10.1126/science.1071163
  20. Animal Products Grading Service. (1998) Report of business for animal products grading. APGS, Korea. (http:// www.apgs.co.kr)
  21. Kim, K. H., Lee, J. H., Oh, Y.G., Kang, S.W., Lee, S. C., Park, W. Y. and Ko, Y. D. (2005) The optimal TDN levels of concentrates and slaughter age in Hanwoo steers. J. Anim. Sci. & Technol (Kor). 47, 731-744. https://doi.org/10.5187/JAST.2005.47.5.731
  22. AOAC. (1990) Official methods of analysis 15th ed. Association of Official Analytical Chemists, Washington, DC, U.S.A.

Cited by

  1. Identification of a SNP in Cattle HGD Gene with its Effect on Economic Trait in Hanwoo vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1168
  2. Screening, cloning and sequence analysis of the differential expression genes in Longissimus dorsi of Yanbian Yellow Cattle vol.33, pp.11, 2011, https://doi.org/10.3724/SP.J.1005.2011.01219
  3. Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing vol.29, pp.9, 2016, https://doi.org/10.5713/ajas.15.0760
  4. Underlying functional genomics of fat deposition in adipose tissue vol.521, pp.1, 2013, https://doi.org/10.1016/j.gene.2013.03.045
  5. Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033763
  6. Genes involved in muscle lipid composition in 15 EuropeanBos taurusbreeds vol.44, pp.5, 2013, https://doi.org/10.1111/age.12044
  7. Dietary n-3 Fatty Acids Significantly Suppress Lipogenesis in Bovine Muscle and Adipose Tissue: A Functional Genomics Approach vol.46, pp.7, 2011, https://doi.org/10.1007/s11745-011-3571-z
  8. Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo vol.39, pp.2, 2012, https://doi.org/10.7744/cnujas.2012.39.2.219
  9. Novel single nucleotide polymorphisms of bovine SREBP1 gene is association with fatty acid composition and marbling score in commercial Korean cattle (Hanwoo) vol.40, pp.1, 2013, https://doi.org/10.1007/s11033-012-2055-4
  10. Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle) vol.25, pp.5, 2012, https://doi.org/10.5713/ajas.2011.11347
  11. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle vol.29, pp.2, 2016, https://doi.org/10.5713/ajas.15.0502
  12. Identification of SNPs in TG and EDG1 genes and their relationships with carcass traits in Korean cattle (Hanwoo) vol.39, pp.3, 2012, https://doi.org/10.7744/cnujas.2012.39.3.349
  13. Differential Expressions of G0/G1 Switch Gene 2 and Comparative Gene Identification-58 are Associated with Fat Content in Bovine Muscle vol.49, pp.1, 2014, https://doi.org/10.1007/s11745-013-3866-3
  14. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds vol.154, pp.1-3, 2013, https://doi.org/10.1016/j.livsci.2013.02.020
  15. Differentially transcribed genes in skeletal muscle of lambs vol.150, pp.1-3, 2012, https://doi.org/10.1016/j.livsci.2012.07.027
  16. A novel genetic variant database for Korean native cattle (Hanwoo): HanwooGDB vol.37, pp.1, 2015, https://doi.org/10.1007/s13258-014-0224-7
  17. Heat Shock Protein B1 and Its Regulator Genes Are Negatively Correlated with Intramuscular Fat Content in the Longissimus Thoracis Muscle of Hanwoo (Korean Cattle) Steers vol.59, pp.10, 2011, https://doi.org/10.1021/jf200217j
  18. Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle1 vol.91, pp.3, 2013, https://doi.org/10.2527/jas.2012-5409