DOI QR코드

DOI QR Code

Biomarkers for the lung cancer diagnosis and their advances in proteomics

  • Sung, Hye-Jin (Department of Biochemistry, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Cho, Je-Yoel (Department of Biochemistry, School of Dentistry, Brain Korea 21, Kyungpook National University)
  • Published : 2008.09.30

Abstract

Over a last decade, intense interest has been focused on biomarker discovery and their clinical uses. This interest is accelerated by the completion of human genome project and the progress of techniques in proteomics. Especially, cancer biomarker discovery is eminent in this field due to its anticipated critical role in early diagnosis, therapy guidance, and prognosis monitoring of cancers. Among cancers, lung cancer, one of the top three major cancers, is the one showing the highest mortality because of failure in early diagnosis. Numerous potential DNA biomarkers such as hypermethylations of the promoters and mutations in K-ras, p53, and protein biomarkers; carcinoembryonic antigen (CEA), CYFRA21-1, plasma kallikrein B1 (KLKB1), Neuron-specific enolase, etc. have been discovered as lung cancer biomarkers. Despite extensive studies thus far, few are turned out to be useful in clinic. Even those used in clinic do not show enough sensitivity, specificity and reproducibility for general use. This review describes what the cancer biomarkers are for, various types of lung cancer biomarkers discovered at present and predicted future advance in lung cancer biomarker discovery with proteomics technology.

Keywords

References

  1. Dalton, W.S. and Friend, S.H. (2006) Cancer biomarkers--an invitation to the table. Science 312, 1165-1168 https://doi.org/10.1126/science.1125948
  2. Fung, E.T., Wright, G.L., Jr. and Dalmasso, E.A. (2000) Proteomic strategies for biomarker identification: progress and challenges. Curr. Opin. Mol. Ther. 2, 643-650
  3. Druker, B.J. (2003) Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin. Pharmacother. 4, 963-971 https://doi.org/10.1517/14656566.4.6.963
  4. Leget, G.A. and Czuczman, M.S. (1998) Use of rituximab, the new FDA-approved antibody. Curr. Opin. Oncol. 10, 548-551 https://doi.org/10.1097/00001622-199811000-00012
  5. Arteaga, C.L., Moulder, S.L. and Yakes, F.M. (2002) HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin. Oncol. 29, 4-10
  6. Baylin, S.B. (2005) DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2 Suppl 1, S4-11 https://doi.org/10.1038/ncponc0052
  7. Belinsky, S.A. (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 4, 707-717 https://doi.org/10.1038/nrc1432
  8. Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K.M., Carver, L.A., Testa, J.E. and Schnitzer, J.E. (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629-635 https://doi.org/10.1038/nature02580
  9. Park, H.J., Kim, B.G., Lee, S.J., Heo, S.H., Kim, J.Y., Kwon, T.H., Lee, E.B., Ryoo, H.M. and Cho, J.Y. (2008) Proteomic profiling of endothelial cells in human lung cancer. J. Proteome Res. 7, 1138-1150 https://doi.org/10.1021/pr7007237
  10. Granville, C.A. and Dennis, P.A. (2005) An overview of lung cancer genomics and proteomics. Am. J. Respir. Cell Mol. Biol. 32, 169-176 https://doi.org/10.1165/rcmb.F290
  11. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C. and Thun, M.J. (2006) Cancer statistics, 2006. CA. Cancer J. Clin. 56, 106-130 https://doi.org/10.3322/canjclin.56.2.106
  12. Mulshine, J.L. and Sullivan, D.C. (2005) Clinical practice. Lung cancer screening. N. Engl. J. Med. 352, 2714-2720 https://doi.org/10.1056/NEJMcp042630
  13. Ludwig, J.A. and Weinstein, J.N. (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845-856 https://doi.org/10.1038/nrc1739
  14. Brambilla, C., Fievet, F., Jeanmart, M., de Fraipont, F., Lantuejoul, S., Frappat, V., Ferretti, G., Brichon, P.Y. and Moro-Sibilot, D. (2003) Early detection of lung cancer: role of biomarkers. Eur. Respir J. Suppl. 39, 36s-44s
  15. Chung, G.T., Sundaresan, V., Hasleton, P., Rudd, R., Taylor, R. and Rabbitts, P.H. (1995) Sequential molecular genetic changes in lung cancer development. Oncogene 11, 2591-2598
  16. Kishimoto, Y., Sugio, K., Hung, J.Y., Virmani, A.K., McIntire, D.D., Minna, J.D. and Gazdar, A.F. (1995) Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers. J. Natl. Cancer Inst. 87, 1224-1229 https://doi.org/10.1093/jnci/87.16.1224
  17. Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjoblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P.A., Kaminker, J.S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J.K., Sukumar, S., Polyak, K., Park, B.H., Pethiyagoda, C.L., Pant, P.V., Ballinger, D.G., Sparks, A.B., Hartigan, J., Smith, D.R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S.D., Parmigiani, G., Kinzler, K.W., Velculescu, V.E. and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318, 1108-1113 https://doi.org/10.1126/science.1145720
  18. Wistuba, II, Lam, S., Behrens, C., Virmani, A.K., Fong, K.M., LeRiche, J., Samet, J.M., Srivastava, S., Minna, J.D. and Gazdar, A.F. (1997) Molecular damage in the bronchial epithelium of current and former smokers. J. Natl. Cancer Inst. 89, 1366-1373 https://doi.org/10.1093/jnci/89.18.1366
  19. Senchenko, V.N., Liu, J., Loginov, W., Bazov, I., Angeloni, D., Seryogin, Y., Ermilova, V., Kazubskaya, T., Garkavtseva, R., Zabarovska, V.I., Kashuba, V.I., Kisselev, L.L., Minna, J.D., Lerman, M.I., Klein, G., Braga, E.A. and Zabarovsky, E.R. (2004) Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene 23, 5719-5728 https://doi.org/10.1038/sj.onc.1207760
  20. Wiest, J.S., Franklin, W.A., Drabkin, H., Gemmill, R., Sidransky, D. and Anderson, M.W. (1997) Genetic markers for early detection of lung cancer and outcome measures for response to chemoprevention. J. Cell Biochem. Suppl. 28-29, 64-73
  21. Zabarovsky, E.R., Lerman, M.I. and Minna, J.D. (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21, 6915-6935 https://doi.org/10.1038/sj.onc.1205835
  22. Xue, X., Zhu, Y.M. and Woll, P.J. (2006) Circulating DNA and lung cancer. Ann. N.Y. Acad. Sci. 1075, 154-164 https://doi.org/10.1196/annals.1368.021
  23. Mao, L., Lee, J.S., Kurie, J.M., Fan, Y.H., Lippman, S.M., Lee, J.J., Ro, J.Y., Broxson, A., Yu, R., Morice, R.C., Kemp, B.L., Khuri, F.R., Walsh, G.L., Hittelman, W.N. and Hong, W.K. (1997) Clonal genetic alterations in the lungs of current and former smokers. J. Natl. Cancer Inst. 89, 857-862 https://doi.org/10.1093/jnci/89.12.857
  24. Wistuba, II, Behrens, C., Milchgrub, S., Bryant, D., Hung, J., Minna, J.D. and Gazdar, A.F. (1999) Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 18, 643-650 https://doi.org/10.1038/sj.onc.1202349
  25. Belinsky, S.A., Nikula, K.J., Palmisano, W.A., Michels, R., Saccomanno, G., Gabrielson, E., Baylin, S.B. and Herman, J.G. (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. U.S.A. 95, 11891-11896 https://doi.org/10.1073/pnas.95.20.11891
  26. Chaussade, L., Eymin, B., Brambilla, E. and Gazzeri, S. (2001) Expression of p15 and p15.5 products in neuroendocrine lung tumours: relationship with p15(INK4b) methylation status. Oncogene 20, 6587-6596 https://doi.org/10.1038/sj.onc.1204798
  27. Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S.B. and Herman, J.G. (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 59, 67-70
  28. Kurakawa, E., Shimamoto, T., Utsumi, K., Hirano, T., Kato, H. and Ohyashiki, K. (2001) Hypermethylation of p16 (INK4a) and p15(INK4b) genes in non-small cell lung cancer. Int. J. Oncol. 19, 277-281
  29. Palmisano, W.A. Divine, K.K., Saccomanno, G., Gilliland, F.D., Baylin, S.B., Herman, J.G. and Belinsky, S.A. (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60, 5954-5958
  30. Fukuyama, Y., Bryant, D., Maitra, A., Heda, S., Fong, K.M., Thunnissen, F., Minna, J.D. and Gazdar, A.F. (2000) Promoter methylation and silencing of the retinoic acid receptor- beta gene in lung carcinomas. J. Natl. Cancer Inst. 92, 1303-1307 https://doi.org/10.1093/jnci/92.16.1303
  31. Zochbauer-Muller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F. and Minna, J.D. (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249-255
  32. Rodenhuis, S. and Slebos, R.J. (1992) Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 52, 2665s-2669s
  33. Sugio, K., Ishida, T., Yokoyama, H., Inoue, T., Sugimachi, K. and Sasazuki, T. (1992) ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res. 52, 2903-2906
  34. Brambilla, E., Gazzeri, S., Lantuejoul, S., Coll, J.L., Moro, D. Negoescu, A. and Brambilla, C. (1998) p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res. 4, 1609-1618
  35. Gazzeri, S., Brambilla, E., Caron de Fromentel, C., Gouyer, V., Moro, D., Perron, P., Berger, F. and Brambilla, C. (1994) p53 genetic abnormalities and myc activation in human lung carcinoma. Int. J. Cancer 58, 24-32 https://doi.org/10.1002/ijc.2910580106
  36. Levine, A.J. (1997) p53, the cellular gatekeeper for growth and division. Cell. 88, 323-331 https://doi.org/10.1016/S0092-8674(00)81871-1
  37. Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M,. Sadahiro, M. and Motoyama, T. (2007) Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer 58, 131-138 https://doi.org/10.1016/j.lungcan.2007.05.011
  38. Wistuba, II, Gazdar, A.F. and Minna, J.D. (2001) Molecular genetics of small cell lung carcinoma. Semin. Oncol. 28, 3-13 https://doi.org/10.1053/sonc.2001.20744
  39. Kim, J.S., Kim, J.W., Han, J., Shim, Y.M., Park, J. and Kim, D.H. (2006) Cohypermethylation of p16, and FHIT promoters as a prognostic factor of recurrence in surgically resected stage I non-small cell lung cancer. Cancer Res. 66, 4049-4054 https://doi.org/10.1158/0008-5472.CAN-05-3813
  40. Aviel-Ronen, S., Blackhall, F.H., Shepherd, F.A. and Tsao, M.S. (2006) K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer 8, 30-38 https://doi.org/10.3816/CLC.2006.n.030
  41. Simpson, R.J., Bernhard, O.K., Greening, D.W. and Moritz, R.L. (2008) Proteomics-driven cancer biomarker discovery: looking to the future. Curr. Opin. Chem. Biol. 12, 72-77 https://doi.org/10.1016/j.cbpa.2008.02.010
  42. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder,N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., et al. (2001) The sequence of the human genome. Science 291, 1304-1351 https://doi.org/10.1126/science.1058040
  43. Strauss, G.M. and Skarin, A.T. (1994) Use of tumor markers in lung cancer. Hematol. Oncol. Clin. North. Am. 8, 507-532 https://doi.org/10.1016/S0889-8588(18)30166-7
  44. Omenn, G.S. (2006) Strategies for plasma proteomic profiling of cancers. Proteomics 6, 5662-5673 https://doi.org/10.1002/pmic.200600331
  45. Rifai, N., Gillette, M.A. and Carr, S.A. (2006) Protein biomarker discovery, and validation: the long, and uncertain path to clinical utility. Nat. Biotechnol. 24, 971-983 https://doi.org/10.1038/nbt1235
  46. Kulpa, J., Wojcik, E., Radkowski, A., Kolodziejski, L. and Stasik, Z. (2000) CYFRA 21-1, TPA-M, TPS, SCC-Ag, and CEA in patients with squamous cell lung cancer, and in chemical industry workers as a reference group. Anticancer Res. 20, 5035-5040
  47. Molina, R., Auge, J.M., Filella, X., Vinolas, N., Alicarte, J., Domingo, J.M. and Ballesta, A.M. (2005) Pro-gastrin-releasing peptide (proGRP) in patients with benign, and malignant diseases: comparison with CEA, SCC, CYFRA 21-1, and NSE in patients with lung cancer. Anticancer Res. 25, 1773-1778
  48. Molina, R., Filella, X., Auge, J.M., Fuentes, R., Bover, I., Rifa, J., Moreno, V., Canals, E., Vinolas, N., Marquez, A., Barreiro, E., Borras, J. and Viladiu, P. (2003) Tumor markers (CEA, CA 125, CYFRA 21-1, SCC, and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis, and prognosis. Comparison with the main clinical, and pathological prognostic factors. Tumour Biol. 24, 209-218 https://doi.org/10.1159/000074432
  49. Ardizzoni, A., M.A., Cafferata, M., Tiseo, R., Filiberti, P., Marroni, F. Grossi, and M. Paganuzzi (2006) Decline in serum carcinoembryonic antigen, and cytokeratin 19 fragment during chemotherapy predicts objective response, and survival in patients with advanced nonsmall cell lung cancer. Cancer 107, 2842-2849 https://doi.org/10.1002/cncr.22330
  50. Holdenrieder, S., Stieber, P., von Pawel, J., Raith, H., Nagel, D., Feldmann, K. and Seidel, D. (2004) Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 10, 5981-5987 https://doi.org/10.1158/1078-0432.CCR-04-0625
  51. Hampton, R., Walker, M., Marshall, J. and Juhl, H. (2002) Differential expression of carcinoembryonic antigen (CEA) splice variants in whole blood of colon cancer patients, and healthy volunteers: implication for the detection of circulating colon cancer cells. Oncogene 21, 7817-7823 https://doi.org/10.1038/sj.onc.1205906
  52. Trauner, M., Grygar, S., Stauber, R.E., Brodatsch-Hausler, E. and Klimpfinger, M. (1994) Carcinoembryonic antigen, cytokeratin expression, and mucin composition in hyperplastic, and neoplastic polyps of the colorectum. Z. Gastroenterol. 32, 626-631
  53. Buccheri, G., Torchio, P. and Ferrigno, D. (2003) Clinical equivalence of two cytokeratin markers in mon-small cell lung cancer: a study of tissue polypeptide antigen, and cytokeratin 19 fragments. Chest. 124, 622-632 https://doi.org/10.1378/chest.124.2.622
  54. Schneider, J., Philipp, M., Velcovsky, H.G., Morr, H. and Katz, N. (2003) Pro-gastrin-releasing peptide (ProGRP), neuron specific enolase (NSE), carcinoembryonic antigen (CEA), and cytokeratin 19-fragments (CYFRA 21-1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res. 23, 885-893
  55. Barak, V., Goike, H., Panaretakis, K.W. and Einarsson, R. (2004) Clinical utility of cytokeratins as tumor markers. Clin. Biochem. 37, 529-540 https://doi.org/10.1016/j.clinbiochem.2004.05.009
  56. Lamy, P., Grenier, J., Kramar, A. and Pujol, J.L. (2000) Pro-gastrin-releasing peptide, neuron specific enolase, and chromogranin A as serum markers of small cell lung cancer. Lung Cancer 29, 197-203
  57. Greenberg, A.K. and Lee, M.S. (2007) Biomarkers for lung cancer: clinical uses. Curr. Opin. Pulm. Med. 13, 249-255 https://doi.org/10.1097/MCP.0b013e32819f8f06
  58. Dziadziuszko, R., Witta, S.E., Cappuzzo, F., Park, S., Tanaka, K., Danenberg, P.V., Baron, A.E., Crino, L., Franklin, W.A., Bunn, P.A., Jr., Varella-Garcia, M., Danenberg, K.D. and Hirsch, F.R. (2006) Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin. Cancer Res. 12, 3078-3084 https://doi.org/10.1158/1078-0432.CCR-06-0106
  59. Nishio, K., Arao, T., Shimoyama, T., Fujiwara, Y., Tamura, T. and Saijo, N. (2005) Translational studies for target-based drugs. Cancer Chemother. Pharmacol. 56 Suppl 1, 90-93 https://doi.org/10.1007/s00280-005-0104-6
  60. Barlesi, F., Gimenez, C., Torre, J.P., Doddoli, C., Mancini, J., Greillier, L., Roux, F. and Kleisbauer, J.P. (2004) Prognostic value of combination of Cyfra 21-1, CEA, and NSE in patients with advanced non-small cell lung cancer. Respir. Med. 98, 357-362 https://doi.org/10.1016/j.rmed.2003.11.003
  61. Muley, T., Dienemann, H. and Ebert, W. (2003) Increased CYFRA 21-1, and CEA levels are negative predictors of outcome in p-stage I NSCLC. Anticancer Res. 23, 4085-4093
  62. Muley, T., Dienemann, H. and Ebert, W. (2004) CYFRA 21-1, and CEA are independent prognostic factors in 153 operated stage I NSCLC patients. Anticancer Res. 24, 1953-1956
  63. Okada, M., Nishio, W., Sakamoto, T., Uchino, K., Yuki, T., Nakagawa, A. and Tsubota, N. (2004) Prognostic significance of perioperative serum carcinoembryonic antigen in non-small cell lung cancer: analysis of 1,000 consecutive resections for clinical stage I disease. Ann. Thorac. Surg. 78, 216-221 https://doi.org/10.1016/j.athoracsur.2004.02.009
  64. Okamoto, T., Nakamura, T., Ikeda, J., Maruyama, R., Shoji, F., Miyake, T., Wataya, H. and Ichinose, Y. (2005) Serum carcinoembryonic antigen as a predictive marker for sensitivity to gefitinib in advanced non-small cell lung cancer. Eur. J. Cancer 41, 1286-1290 https://doi.org/10.1016/j.ejca.2005.03.011
  65. Salgia, R., Harpole, D., Herndon, J.E., 2nd, Pisick, E., Elias, A. and Skarin, A.T. (2001) Role of serum tumor markers CA 125, and CEA in non-small cell lung cancer. Anticancer Res. 21, 1241-1246
  66. Lee, J.H. and Chang, J.H. (2005) Diagnostic utility of serum, and pleural fluid carcinoembryonic antigen, neuron- specific enolase, and cytokeratin 19 fragments in patients with effusions from primary lung cancer. Chest. 128, 2298-2303 https://doi.org/10.1378/chest.128.4.2298
  67. Pollan, M., Varela, G., Torres, A., de la Torre, M., Ludena, M.D., Ortega, M.D., Pac, J., Freixenet, J., Gomez, G., Sebastian, F., Diez, M., Arrabal, R., Canalis, E., Garcia- Tirado, J., Arnedillo, A., Rivas, J.J., Minguella, J., Gomez, A., Garcia, M., Aragones, N., Perez-Gomez, B., Lopez-Abente, G., Gonzalez-Sarmiento, R. and Rojas, J.M. (2003) Clinical value of p53, c-erbB-2, CEA, and CA125 regarding relapse, metastasis, and death in resectable non-small cell lung cancer. Int. J. Cancer 107, 781-790 https://doi.org/10.1002/ijc.11472
  68. Sakao, Y., Nakazono, T., Sakuragi, T., Natsuaki, M. and Itoh, T. (2004) Predictive factors for survival in surgically resected clinical IA peripheral adenocarcinoma of the lung. Ann. Thorac. Surg. 77, 1157-1161; discussion 1161-1152 https://doi.org/10.1016/j.athoracsur.2003.09.055
  69. Sun, S.S., Hsieh, J.F., Tsai, S.C., Ho, Y.J. and Kao, C.H. (2000) Tissue polypeptide-specific antigen, and carcinoembryonic antigen for early prediction of recurrence in lung adenocarcinoma. Am. J. Clin. Oncol. 23, 605-608 https://doi.org/10.1097/00000421-200012000-00016
  70. Tomita, M., Matsuzaki, Y., Edagawa, M., Shimizu, T., Hara, M. and Onitsuka, T. (2004) Prognostic significance of preoperative serum carcinoembryonic antigen level in lung adenocarcinoma but not squamous cell carcinoma. Ann. Thorac. Cardiovasc. Surg. 10, 76-80
  71. Zhou, B.B. and Bartek, J. (2004) Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer 4, 216-225 https://doi.org/10.1038/nrc1296
  72. Kulpa, J., Wojcik, E., Reinfuss, M. and Kolodziejski, L. (2002) Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin. Chem. 48, 1931-1937
  73. Barlesi, F., Tchouhadjian, C., Doddoli, C., Torre, J.P., Astoul, P. and Kleisbauer, J.P. (2005) CYFRA 21-1 level predicts survival in non-small-cell lung cancer patients receiving gefitinib as third-line therapy. Br. J. Cancer 92, 13-14 https://doi.org/10.1038/sj.bjc.6602296
  74. Hatzakis, K.D., Froudarakis, M.E., Bouros, D., Tzanakis, N., Karkavitsas, N. and Siafakas, N.M. (2002) Prognostic value of serum tumor markers in patients with lung cancer. Respiration 69, 25-29 https://doi.org/10.1159/000049366
  75. Kashiwabara, K., Nakamura, H. and Esaki, T. (2000) Prognosis in bronchogenic squamous cell carcinoma groups divided according to serum squamous cell carcinoma-related antigen, and cytokeratin 19 fragment levels. Clin. Chim. Acta. 294, 105-113 https://doi.org/10.1016/S0009-8981(99)00247-8
  76. Merle, P., Janicot, H., Filaire, M., Roux, D., Bailly, C., Vincent, C., Gachon, F., Tchirkov, A., Kwiatkowski, F., Naame, A., Escande, G., Caillaud, D. and Verrelle, P. (2004) Early CYFRA 21-1 variation predicts tumor response to chemotherapy, and survival in locally advanced non-small cell lung cancer patients. Int. J. Biol. Markers 19, 310-315 https://doi.org/10.1177/172460080401900409
  77. Pujol, J.L., Boher, J.M., Grenier, J. and Quantin, X. (2001) Cyfra 21-1, neuron specific enolase, and prognosis of nonsmall cell lung cancer: prospective study in 621 patients. Lung Cancer 31, 221-231 https://doi.org/10.1016/S0169-5002(00)00186-0
  78. Pujol, J.L., Molinier, O., Ebert, W., JDaures, .P., Barlesi, F., Buccheri, G., Paesmans, M., Quoix, E., Moro-Sibilot, D., Szturmowicz, M., Brechot, J.M., Muley, T. and Grenier, J. (2004) CYFRA 21-1 is a prognostic determinant in non-small-cell lung cancer: results of a meta-analysis in 2063 patients. Br. J. Cancer 90, 2097-2105 https://doi.org/10.1038/sj.bjc.6601851
  79. Reinmuth, N., Brandt, B., Semik, M., Kunze, W.P., Achatzy, R., Scheld, H.H., Broermann, P., Berdel, W.E., Macha, H.N. and Thomas, M. (2002) Prognostic impact of Cyfra21-1, and other serum markers in completely resected non-small cell lung cancer. Lung Cancer 36, 265-270 https://doi.org/10.1016/S0169-5002(02)00009-0
  80. Sun, S.S., Hsieh, J.F., Tsai, S.C., Ho, Y.J., Lee, J.K. and Kao, C.H. (2000) Cytokeratin fragment 19, and squamous cell carcinoma antigen for early prediction of recurrence of squamous cell lung carcinoma. Am. J. Clin. Oncol. 23, 241-243
  81. Vollmer, R.T., Govindan, R., Graziano, S.L., Gamble, G., Garst, J., Kelley, M.J. and Christenson, R.H. (2003) Serum CYFRA 21-1 in advanced stage non-small cell lung cancer: an early measure of response. Clin. Cancer Res. 9, 1728-1733
  82. Ando, S., Kimura, H., Iwai, N., Yamamoto, N. and Iida, T. (2003) Positive reactions for both Cyfra21-1, and CA125 indicate worst prognosis in non-small cell lung cancer. Anticancer Res. 23, 2869-2874
  83. Pujol, J.L., Quantin, X., Jacot, W., Boher, J.M., Grenier, J. and Lamy, P.J. (2003) Neuroendocrine, and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer 39, 131-138 https://doi.org/10.1016/S0169-5002(02)00513-5
  84. Molina, R., Filella, X. and Auge, J.M. (2004) ProGRP: a new biomarker for small cell lung cancer. Clin. Biochem. 37, 505-511 https://doi.org/10.1016/j.clinbiochem.2004.05.007
  85. Schneider, J. (2006) Tumor markers in detection of lung cancer. Adv. Clin. Chem. 42, 1-41 https://doi.org/10.1016/S0065-2423(06)42001-1
  86. Bonner, J.A., Sloan, J.A., Rowland, K.M., Jr., Klee, G.G., Kugler, J.W., Mailliard, J.A., Wiesenfeld, M., Krook, J.E., Maksymiuk, A.W., Shaw, E.G., Marks, R.S. and Perez, E.A. (2000) Significance of neuron-specific enolase levels before, and during therapy for small cell lung cancer. Clin. Cancer Res. 6, 597-601
  87. Satoh, H., Ishikawa, H., Kurishima, K., Yamashita, Y.T., Ohtsuka, M. and Sekizawa, K. (2002) Cut-off levels of NSE to differentiate SCLC from NSCLC. Oncol. Rep. 9, 581-583
  88. Schneider, J., Philipp, M., Salewski, L. and Velcovsky, H.G. (2003) Pro-gastrin-releasing peptide, (ProGRP), and neuron specific enolase, (NSE) in therapy control of patients with small-cell lung cancer. Clin. Lab. 49, 35-42
  89. Shibayama, T., Ueoka, H., Nishii, K., Kiura, K., Tabata, M., Miyatake, K., Kitajima, T. and Harada, M. (2001) Complementary roles of pro-gastrin-releasing peptide, (ProGRP), and neuron specific enolase, (NSE) in diagnosis, and prognosis of small-cell lung cancer, (SCLC). Lung Cancer 32, 61-69
  90. Massacesi, C., Rocchi, M.B., Marcucci, F., Pilone, A., Galeazzi, M. and Bonsignori, M. (2003) Serum tumor markers may precede instrumental response to chemotherapy in patients with metastatic cancer. Int. J. Biol. Markers 18, 295-300 https://doi.org/10.1177/172460080301800408
  91. Ferrigno, D., Buccheri, G. and Giordano, C. (2003) Neuronspecific enolase is an effective tumour marker in non-small cell lung cancer, (NSCLC). Lung Cancer 41, 311-320 https://doi.org/10.1016/S0169-5002(03)00232-0
  92. Ando, S., Suzuki, M., Yamamoto, N., Iida, T. and Kimura, H. (2004) The prognostic value of both neuron-specific enolase, (NSE), and Cyfra21-1 in small cell lung cancer. Anticancer Res. 24, 1941-1946
  93. Bremnes, R.M., Sundstrom, S., Aasebo, U., Kaasa, S., Hatlevoll, R. and Aamdal, S. (2003) The value of prognostic factors in small cell lung cancer: results from a randomised multicenter study with minimum 5 year follow- up. Lung Cancer 39, 303-313 https://doi.org/10.1016/S0169-5002(02)00508-1
  94. Maeda, T., Ueoka, H., Tabata, M., Kiura, K., Shibayama, T., Gemba, K., Takigawa, N., Hiraki, A., Katayama, H. and Harada, M. (2000) Prognostic factors in advanced non-small cell lung cancer: elevated serum levels of neuron specific enolase indicate poor prognosis. Jpn. J. Clin. Oncol. 30, 534-541 https://doi.org/10.1093/jjco/hyd139
  95. Cho, W.C., Yip, T.T., Yip, C., Yip, V., Thulasiraman, V., Ngan, R.K., Yip, T.T., Lau, W.H., Au, J.S., Law, S.C., Cheng, W.W., Ma, V.W. and Lim, C.K. (2004) Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin. Cancer Res. 10, 43-52 https://doi.org/10.1158/1078-0432.CCR-0413-3
  96. Maciel, C.M., Junqueira, M., Paschoal, M.E., Kawamura, M.T., Duarte, R.L., Carvalho Mda, G. and Domont, G.B. (2005) Differential proteomic serum pattern of low molecular weight proteins expressed by adenocarcinoma lung cancer patients. J. Exp. Ther. Oncol. 5, 31-38
  97. Huang, L.J.,Chen, S.X., Huang, Y., Luo, W.J., Jiang, H.H., Hu, Q.H., Zhang, P.F. and Yi, H. (2006) Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer 54, 87-94 https://doi.org/10.1016/j.lungcan.2006.06.011
  98. Heo, S.H., Lee, S.J., Ryoo, H.M., Park, J.Y. and Cho, J.Y. (2007) Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography, and LC-MS/MS. Proteomics 7, 4292-4302 https://doi.org/10.1002/pmic.200700433
  99. Liotta, L.A. and Petricoin, E.F. (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest. 116, 26-30 https://doi.org/10.1172/JCI27467
  100. Villanueva, J., Shaffer, D.R., Philip, J., Chaparro, C.A., Erdjument-Bromage, H., Olshen, A.B., Fleisher, M., Lilja, H., Brogi, E., Boyd, J., Sanchez-Carbayo, M., Holland, E.C., Cordon-Cardo, C., Scher, H.I. and Tempst, P. (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271-284 https://doi.org/10.1172/JCI26022
  101. Biran, H., Friedman, N., Neumann, L., Pras, M. and Shainkin-Kestenbaum, R. (1986) Serum amyloid A, (SAA) variations in patients with cancer: correlation with disease activity, stage, primary site, and prognosis. J. Clin. Pathol. 39, 794-797 https://doi.org/10.1136/jcp.39.7.794
  102. Anderson, N.L. and anderson, N.G. (1998) Proteome, and proteomics: new technologies, new concepts, and new words., Electrophoresis 19, 1853-1861 https://doi.org/10.1002/elps.1150191103
  103. de Hoog, C.L. and Mann, M. (2004) Proteomics. Annu. Rev. Genomics. Hum. Genet. 5, 267-293 https://doi.org/10.1146/annurev.genom.4.070802.110305
  104. Pandey, A. and Mann, M. (2000) Proteomics to study genes, and genomes. Nature 405, 837-846 https://doi.org/10.1038/35015709
  105. Conrad, D.H., Goyette, J. and Thomas, P.S. (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med. 23 Suppl 1, 78-84 https://doi.org/10.1007/s11606-007-0411-1
  106. Alessandro, R., Fontana, S., Kohn, E. and De Leo, G. (2005) Proteomic strategies, and their application in cancer research. Tumori. 91, 447-455
  107. Anderson, N.L. and anderson, N.G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845-867 https://doi.org/10.1074/mcp.R200007-MCP200
  108. Hanash, S.M., Pitteri, S.J. and Faca, V.M. (2008) Mining the plasma proteome for cancer biomarkers. Nature 452, 571-579 https://doi.org/10.1038/nature06916
  109. Anderson, L. and Hunter, C.L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteomics 5, 573-588 https://doi.org/10.1074/mcp.M500331-MCP200
  110. Janecki, D.J., Bemis, K.G., Tegeler, T.J., Sanghani, P.C., Zhai, L., Hurley, T.D., Bosron, W.F. and Wang, M. (2007) A multiple reaction monitoring method for absolute quantification of the human liver alcohol dehydrogenase ADH1C1 isoenzyme. Anal. Biochem. 369, 18-26 https://doi.org/10.1016/j.ab.2007.06.043
  111. Anderson, N.L. anderson, N.G. Haines, L.R., Hardie, D.B., Olafson, R.W. and Pearson, T.W. (2004) Mass spectrometric quantitation of peptides, and proteins using Stable Isotope Standards, and Capture by Anti-Peptide Antibodies, (SISCAPA). J. Proteome. Res. 3, 235-244 https://doi.org/10.1021/pr034086h
  112. Keshishian, H., Addona, T., Burgess, M., Kuhn, E. and Carr, S.A. (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry, and stable isotope dilution. Mol. Cell Proteomics 6, 2212-2229 https://doi.org/10.1074/mcp.M700354-MCP200

Cited by

  1. The application of statistical methods using VOCs to identify patients with lung cancer vol.5, pp.4, 2011, https://doi.org/10.1088/1752-7155/5/4/046008
  2. Unlocking Biomarker Discovery: Large Scale Application of Aptamer Proteomic Technology for Early Detection of Lung Cancer vol.5, pp.12, 2010, https://doi.org/10.1371/journal.pone.0015003
  3. Molecular genetic markers in diagnosis of lung cancer vol.45, pp.2, 2011, https://doi.org/10.1134/S0026893310061056
  4. Analysis of Tumor Markers in the Cytological Fluid Obtained from Computed Tomography-Guided Needle Aspiration Biopsy for the Diagnosis of Non-small Cell Lung Cancer vol.6, pp.8, 2011, https://doi.org/10.1097/JTO.0b013e31822462b1
  5. Differentially expressed and activated proteins associated with non small cell lung cancer tissues vol.16, pp.1, 2015, https://doi.org/10.1186/s12931-015-0234-2
  6. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples vol.6, pp.1, 2016, https://doi.org/10.1038/srep34350
  7. Analysis of tumor markers in cytological fluid obtained from computed tomography-guided needle aspiration biopsies for the diagnosis of ground-glass opacity pulmonary lesions vol.121, pp.4, 2013, https://doi.org/10.1002/cncy.21244
  8. Prolonged burst as a new method for cardioverter-defibrillator testing vol.15, pp.1, 2013, https://doi.org/10.1093/europace/eus250
  9. Futuro de los marcadores moleculares en cáncer: hacia un tratamiento personalizado vol.132, pp.14, 2009, https://doi.org/10.1016/j.medcli.2008.12.019
  10. Les outils biologiques en pratique : aide au diagnostic, au pronostic et au traitement du cancer bronchique vol.1, pp.4, 2009, https://doi.org/10.1016/S1877-1203(09)72497-8
  11. Lung Cancer Proteomics: Recent Advances in Biomarker Discovery vol.2011, 2011, https://doi.org/10.1155/2011/726869
  12. A point-of-care testing system with Love-wave sensor and immunogold staining enhancement for early detection of lung cancer vol.16, pp.6, 2014, https://doi.org/10.1007/s10544-014-9897-6
  13. Radiogenomics Predicting Tumor Responses to Radiotherapy in Lung Cancer vol.20, pp.3, 2010, https://doi.org/10.1016/j.semradonc.2010.01.002
  14. Differential proteomic approach for identification and verification of aberrantly glycosylated proteins in adenocarcinoma lung cancer (ADLC) plasmas by lectin-capturing and targeted mass spectrometry vol.106, 2014, https://doi.org/10.1016/j.jprot.2014.04.031
  15. Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery vol.32, pp.2, 2013, https://doi.org/10.1002/mas.21355
  16. Molecular Screening of Blood Samples for the Simultaneous Detection of CEA, HER-1, NSE, CYFRA 21-1 Using Stochastic Sensors vol.164, pp.6, 2017, https://doi.org/10.1149/2.1621706jes
  17. Lung cancer samples preserved in liquid medium: One step beyond cytology vol.45, pp.10, 2017, https://doi.org/10.1002/dc.23743
  18. Glycoproteomics Approach for Identifying Glycobiomarker Candidate Molecules for Tissue Type Classification of Non-small Cell Lung Carcinoma vol.13, pp.11, 2014, https://doi.org/10.1021/pr5006668
  19. Increased stathmin in serum as a potential tumor marker for lung adenocarcinoma vol.47, pp.4, 2017, https://doi.org/10.1093/jjco/hyx005
  20. A New Biomarker Panel in Bronchoalveolar Lavage for an Improved Lung Cancer Diagnosis vol.9, pp.10, 2014, https://doi.org/10.1097/JTO.0000000000000282
  21. Liquid chromatography/mass spectrometry methods for measuring dipeptide abundance in non-small-cell lung cancer vol.27, pp.18, 2013, https://doi.org/10.1002/rcm.6656
  22. Proteomic approaches in lung cancer biomarker development vol.6, pp.1, 2009, https://doi.org/10.1586/14789450.6.1.27
  23. Application of Proteomics to Cancer Early Detection vol.17, pp.6, 2011, https://doi.org/10.1097/PPO.0b013e3182383cab
  24. Tumour biomarkers: homeostasis as a novel prognostic indicator vol.6, pp.12, 2016, https://doi.org/10.1098/rsob.160254
  25. Diagnostic Role of Tumour Markers CEA, CA15-3, CA19-9 and CA125 in Lung Cancer vol.28, pp.1, 2013, https://doi.org/10.1007/s12291-012-0257-0
  26. Validation of cofilin-1 as a biomarker in non-small cell lung cancer: application of quantitative method in a retrospective cohort vol.137, pp.9, 2011, https://doi.org/10.1007/s00432-011-1001-5
  27. Proteomic analysis of differentially expressed serum proteins in lung cancer vol.7, pp.2, 2012, https://doi.org/10.2478/s11535-012-0016-5
  28. The cancer cell secretome: A good source for discovering biomarkers? vol.73, pp.10, 2010, https://doi.org/10.1016/j.jprot.2010.04.003
  29. Integrating genomics and proteomics-oriented biomarkers to comprehend lung cancer vol.3, pp.2, 2009, https://doi.org/10.1517/17530050902725125
  30. State-of-the-art MS technology applications in lung disease vol.3, pp.23, 2011, https://doi.org/10.4155/bio.11.271
  31. Synaptonemal complex protein 3 as a novel prognostic marker in early stage non–small cell lung cancer vol.44, pp.4, 2013, https://doi.org/10.1016/j.humpath.2012.06.018
  32. High Performance, Multiplexed Lung Cancer Biomarker Detection on a Plasmonic Gold Chip vol.26, pp.44, 2016, https://doi.org/10.1002/adfm.201603547
  33. Mass spectrometric identification, characterization and validation of the haptoglobin β-chain protein as a lung cancer serum biomarker vol.12, pp.3, 2015, https://doi.org/10.3892/mmr.2015.3822
  34. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non–Small-Cell Lung Cancer vol.77, pp.3, 2010, https://doi.org/10.1016/j.ijrobp.2010.01.038
  35. Hypermethylation of the enolase gene (ENO2) in autism vol.173, pp.9, 2014, https://doi.org/10.1007/s00431-014-2311-9
  36. Comparative gene expression profiling analysis of lymphoblastoid cells reveals neuron-specific enolase gene (ENO2) as a susceptibility gene of heroin dependence vol.19, pp.1, 2014, https://doi.org/10.1111/j.1369-1600.2011.00390.x
  37. Combining multiple serum biomarkers in tumor diagnosis: A clinical assessment vol.1, pp.1, 2013, https://doi.org/10.3892/mco.2012.23
  38. Serum-based protein biomarkers for detection of lung cancer vol.9, pp.4, 2014, https://doi.org/10.2478/s11535-013-0271-0
  39. Declines in serum CYFRA21-1 and carcinoembryonic antigen as predictors of chemotherapy response and survival in patients with advanced non-small cell lung cancer vol.4, pp.2, 2012, https://doi.org/10.3892/etm.2012.570
  40. An Improved Protocol for N-Glycosylation Analysis of Gel-Separated Sialylated Glycoproteins by MALDI-TOF/TOF vol.5, pp.11, 2010, https://doi.org/10.1371/journal.pone.0015096
  41. Glycans as cancer biomarkers vol.1820, pp.9, 2012, https://doi.org/10.1016/j.bbagen.2011.12.001
  42. Secretomic Analysis Identifies Alpha-1 Antitrypsin (A1AT) as a Required Protein in Cancer Cell Migration, Invasion, and Pericellular Fibronectin Assembly for Facilitating Lung Colonization of Lung Adenocarcinoma Cells vol.11, pp.11, 2012, https://doi.org/10.1074/mcp.M112.017384
  43. Trachea Epithelium as a “Canary” for Cigarette Smoking-Induced Biologic Phenotype of the Small Airway Epithelium vol.2, pp.4, 2009, https://doi.org/10.1111/j.1752-8062.2009.00129.x
  44. Microbubble-Enhanced Ultrasound Liberation of mRNA Biomarkers In Vitro vol.39, pp.6, 2013, https://doi.org/10.1016/j.ultrasmedbio.2012.12.015
  45. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis vol.10, pp.1, 2010, https://doi.org/10.1186/1471-2407-10-290
  46. The Value of Surface Enhanced Laser Desorption/Ionization-Time of Flight Mass Spectrometry at the Diagnosis of Non-Small Cell Lung Cancer: A Systematic Review vol.13, pp.2, 2014, https://doi.org/10.7785/tcrt.2012.500360
  47. Topoisomerase-I PS506 as a Dual Function Cancer Biomarker vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0134929
  48. Targeting of hepatocellular carcinoma with glypican-3-targeting peptide ligand vol.17, pp.11, 2011, https://doi.org/10.1002/psc.1400
  49. A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma vol.6, pp.4, 2011, https://doi.org/10.1371/journal.pone.0018567
  50. Reduction of Elevated Plasma Osteopontin Levels With Resection of Non–Small-Cell Lung Cancer vol.28, pp.6, 2010, https://doi.org/10.1200/JCO.2009.25.5711
  51. Enhanced Information Output From Shotgun Proteomics Data by Protein Quantification and Peptide Quality Control (PQPQ) vol.10, pp.10, 2011, https://doi.org/10.1074/mcp.M111.010264
  52. Non-small cell lung cancer biomarkers and targeted therapy - two faces of the same coin fostered by nanotechnology vol.1, pp.2, 2016, https://doi.org/10.1080/23808993.2016.1159914
  53. Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence vol.51, pp.3, 2013, https://doi.org/10.1007/s12275-013-2577-z
  54. For Which Cancer Types can Neuron-Specific Enolase be Clinically Helpful in Turkish Patients? vol.14, pp.4, 2013, https://doi.org/10.7314/APJCP.2013.14.4.2541
  55. Stanniocalcin-2 (STC2): A potential lung cancer biomarker promotes lung cancer metastasis and progression vol.1854, pp.6, 2015, https://doi.org/10.1016/j.bbapap.2014.11.002
  56. On the identification of biomarkers for non-small cell lung cancer in serum and pleural effusion vol.73, pp.8, 2010, https://doi.org/10.1016/j.jprot.2010.03.005
  57. ROR1 is a novel prognostic biomarker in patients with lung adenocarcinoma vol.6, pp.1, 2016, https://doi.org/10.1038/srep36447
  58. Aptamer-Dendrimer Bioconjugates for Targeted Delivery of miR-34a Expressing Plasmid and Antitumor Effects in Non-Small Cell Lung Cancer Cells vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0139136
  59. MicroRNAs in Body Fluids as Biomarkers for Non-Small Cell Lung Cancer: A Systematic Review vol.13, pp.3, 2014, https://doi.org/10.7785/tcrt.2012.500377
  60. SERS tags-based novel monodispersed hollow gold nanospheres for highly sensitive immunoassay of CEA vol.50, pp.9, 2015, https://doi.org/10.1007/s10853-015-8825-3
  61. Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer vol.8, pp.3, 2011, https://doi.org/10.1038/nrclinonc.2010.220
  62. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors vol.111, pp.11, 2011, https://doi.org/10.1021/cr100420s
  63. Importance of Serum SELDI-TOF-MS Analysis in the Diagnosis of Early Lung Cancer vol.14, pp.3, 2013, https://doi.org/10.7314/APJCP.2013.14.3.2037
  64. Plasma soluble HLA-G is a potential biomarker for diagnosis of colorectal, gastric, esophageal and lung cancer vol.78, pp.2, 2011, https://doi.org/10.1111/j.1399-0039.2011.01716.x
  65. Multiple Marker Detection in Peripheral Blood for NSCLC Diagnosis vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0057401
  66. Research Progress in Applying Proteomics Technology to Explore Early Diagnosis Biomarkers of Breast Cancer, Lung Cancer and Ovarian Cancer vol.15, pp.20, 2014, https://doi.org/10.7314/APJCP.2014.15.20.8529
  67. Co-overexpression of Hsp90-β and annexin A1 with a significantly positive correlation contributes to the diagnosis of lung cancer vol.14, pp.8, 2014, https://doi.org/10.1586/14737159.2014.960517
  68. Discovery of lung squamous carcinoma biomarkers by profiling the plasma peptide with LC/MS/MS vol.28, pp.5, 2017, https://doi.org/10.1016/j.cclet.2016.11.026
  69. Baseline Plasma Proteomic Analysis to Identify Biomarkers that Predict Radiation-Induced Lung Toxicity in Patients Receiving Radiation for Non-small Cell Lung Cancer vol.6, pp.6, 2011, https://doi.org/10.1097/JTO.0b013e3182152ba6
  70. CEA, SCC and NSE levels in exhaled breath condensate—possible markers for early detection of lung cancer vol.7, pp.4, 2013, https://doi.org/10.1088/1752-7155/7/4/047101
  71. Current advances in tumor proteomics and candidate biomarkers for hepatic cancer vol.6, pp.5, 2009, https://doi.org/10.1586/epr.09.72
  72. Identification of Novel Low Molecular Weight Serum Peptidome Biomarkers for Non-Small Cell Lung Cancer (NSCLC) vol.26, pp.3, 2012, https://doi.org/10.1002/jcla.21502
  73. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer vol.2016, 2016, https://doi.org/10.1155/2016/2138627
  74. Potential molecular approaches for the early diagnosis of lung cancer (Review) vol.6, pp.5, 2012, https://doi.org/10.3892/mmr.2012.1042
  75. Human Blood Plasma Proteome Mapping for Search of Potential Markers of the Lung Squamous Cell Carcinoma vol.19, pp.2, 2013, https://doi.org/10.1255/ejms.1220
  76. Current and Prospective Protein Biomarkers of Lung Cancer vol.9, pp.12, 2017, https://doi.org/10.3390/cancers9110155