Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction

Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사

  • Park, Junyong (Department of Chemical Engineering, Hanbat National University) ;
  • Choi, Youngjae (Fuel Cell, Project) ;
  • Kim, Kihyun (Technical Research Laboratories, Ironmaking Research Group, POSCO) ;
  • Oh, Min (Department of Chemical Engineering, Hanbat National University)
  • 박준용 (한밭대학교 화학공학과) ;
  • 최영재 (포항산업과학연구원 연료전지연구단) ;
  • 김기현 (포스코 기술연구소 제선연구그룹) ;
  • 오민 (한밭대학교 화학공학과)
  • Received : 2008.07.24
  • Accepted : 2008.08.29
  • Published : 2008.10.31

Abstract

Rigorous multiscale modelling and simulation of the MTR for WGSR was carried out to accurately predict the behavior of process variables and the reactor performance. The MTR consists of 4 fixed bed tube reactors packed with heterogeneous catalysts, as well as surrounding shell part for the cooling purpose. Considering that fluid flow field and reaction kinetics give a great influence on the reactor performance, employing multiscale methodology encompassing Computational Fluid Dynamics (CFD) and process modeling was natural and, in a sense, inevitable conclusion. Inlet and outlet temperature of the reactant fluid at the tube side was $345^{\circ}C$ and $390^{\circ}C$, respectively and the CO conversion at the exit of the tube side with these conditions approached to about 0.89. At the shell side, the inlet and outlet temperature of the cooling fluid, which flows counter-currently to tube flow, was $190^{\circ}C$ and $240^{\circ}C$. From this heat exchange, the energy saving was achieved for the flow at shell side and temperature of the tube side was properly controlled to obtain high CO conversion. The simulation results from this research were accurately comparable to the experimental data from various papers.

공정변수의 변화와 반응기의 성능을 정확하게 예측하기 위하여 Water Gas Shift Reaction(WGSR)을 위한 Multi-Tubular Reactor (MTR)의 상세 multiscale 모델링과 모사를 수행하였다. MTR은 비 균일 고체 촉매로 충진 된 4개의 관형반응기와 냉각을 위해 주변을 싸고 있는 shell side로 구성되어 있다. 유체의 흐름과 반응 kinetics가 반응기 성능에 큰 영향을 주고 있는 점을 고려할 때, Computational Fluid Dynamics (CFD)기법과 공정모델링 기법을 포함한 multiscale 방법론의 채택은 자연스럽고 필수 불가결한 일이다. $345^{\circ}C$로 관형반응기 부분으로 유입된 반응물은 반응의 결과 $390^{\circ}C$$45^{\circ}C$가량 온도가 증가하였으며, CO의 전환율은 0.89에 이르렀다. 쉘 사이드로 $190^{\circ}C$로 유입된 유체는 쉘 출구에서 $240^{\circ}C$로 약 $50^{\circ}C$ 가량의 온도 증가를 보였으며 이를 통하여 에너지 절감효과를 가져 올 수 있었으며 높은 전환율을 얻기 위해 반응기 부분의 온도를 적절히 제어할 수 있었다. 모사의 결과는 여러 문헌에 보고된 실험 결과와 매우 근접한 값을 나타내 본 연구를 통해 제시된 모델과 모사의 결과가 정확함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 포스코 기술연구소

References

  1. Newsome, D. S., "The Water Gas Shift Reaction," Catal. Rev.-Sci. Eng., 21(2), 275-318(1980) https://doi.org/10.1080/03602458008067535
  2. Rajasree, R. and Moharir, A. S., "Simulation Based Synthesis, Design and Optimization of PSA Processes," Computers & Chem. Eng., 24, 2493-2505(2000) https://doi.org/10.1016/S0098-1354(00)00606-2
  3. Singh, C. P. P. and Saraf, D. N., "Simulation of High-Temperature Water-Gas Shift Rectors," Ind. Chem. Process Des. Dev., 16(3), 313-319(1977) https://doi.org/10.1021/i260063a012
  4. Singh, C. P. P. and Saraf, D. N., "Simulation of Low-Temperature Water-Gas Shift Rectors," Ind. Chem. Process Des. Dev., 19(3), 393-396(1980) https://doi.org/10.1021/i260075a011
  5. Choi, Y. and Stenger, H. G., "Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel Cell Grade Hydrogen," J. Power Source, 124, 432-439(2003) https://doi.org/10.1016/S0378-7753(03)00614-1
  6. Ovensen, C. V., Clausen, B. S., Hammershoi, B. S., Stffensen, G., Askgaard, T., Chorkendorff, I., Norskov, J. K., Rasmussen, P. B., Stolze, P. and Taylor, P., "A Microkinetic Analysis of the Water-Gas Shift Reaction under Industrial Conditions," J. Catal., 158, 170-180(1996) https://doi.org/10.1006/jcat.1996.0016
  7. Botes, F. G., "Water-Gas Shift Kinetics in the Iron-Based Low Temperature Fishcher-Tropsch Synthesis," Appl. Catal. A: General, 328, 237-242(2007) https://doi.org/10.1016/j.apcata.2007.06.016
  8. Callaghan, C., Fishtik, I., Datta, R., Carpenter, M. Chmielewski, M. and Lugo, A., "An Improved Microkinetic Model for the Water Gas Shift Reaction on Copper," Surf. Sci., 541, 21-30(2003) https://doi.org/10.1016/S0039-6028(03)00953-1
  9. Fogler, H. S., Elements of Chemical Reaction Engineering, 3rd ed., Prentice Hall, Chapter 14(1999)
  10. Lee, U. J., Kim, K. H. and Oh, M., "Multiscale Modeling and Simulation of Water Gas Shift Reactor," Korean J. Chem. Eng., 45(6), 582-590(2007)
  11. Ranade, V. V., Computational Flow Modeling for Chemical Reactor Engineering, Academic Press, Chapter 13(2002)
  12. Nauman, E. B., Chemical Reactor Design, Optimization and Scaleup, McGraw-Hill, Chapter 8-9(2002)
  13. Hwang, S. W. and Smith, R., "Heterogeneous Catalytic Reactor Design with Optimum Temperature Profile I: Application of Catalyst Dilution and Side-stream Distribution," Chem. Eng. Sci., 59, 4229-4243(2004) https://doi.org/10.1016/j.ces.2004.05.037
  14. Hwang, S. W., Linke, P. and Smith, R., "Heterogeneous Catalytic Reactor Design with Optimum Temperature Profile I: Application of Non-uniform Catalyst," Chem. Eng. Sci., 59, 4245-4260(2004) https://doi.org/10.1016/j.ces.2004.05.036