Removal of VOCs and H2S from Waste Gas with Biotrickling Filter

생물살수여과법을 이용한 공기중 VOC 및 H2S 제거

  • Kim, Kyoung-Ok (Department of Environmental Engineering, Yeungnam University) ;
  • Kim, Yong-Je (Department of Environmental Engineering, Yeungnam University) ;
  • Won, Yang-Soo (Department of Environmental Engineering, Yeungnam University)
  • Received : 2008.07.07
  • Accepted : 2008.09.16
  • Published : 2008.10.10

Abstract

Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.

생물살수여과법을 이용하여 대표적인 휘발성 유기물질인 toluene, styrene과 악취물질인 $H_2S$를 운전조건에 따른 제거 특성에 대해 실험적 고찰을 중심으로 진행하였다. $H_2S$ 제거 특성 고찰을 위한 autotroph과 mixotroph 조건하에서는 $H_2S$ 부하율이 낮은 조건($10g/m^3{\cdot}hr$)에서는 두 조건에서 모두 제거율이 99% 이상을 나타냈다. 부하율이 증가하면서 제거율이 감소하였으며, mixotroph 조건하에서 제거율이 다소 높았다. 방향족 휘발성 유기화합물질인 toluene과 styrene 농도변화에 따른 부하율과 제거용량 관계에서 toluene 부하율이 $40g/m^3{\cdot}hr$ 이하에서는 농도에 관계없이 제거율이 거의 99%를 나타내나 부하율이 증가함에 따라서 제거율은 감소하며 부하율이 증가해도 제거용량이 더 이상 증가하지 않는 최고제거용량을 나타내고 있으며 toluene 농도가 0.2, 0.5과 $1.0g/m^3$일 때 최고제거용량은 각각 40, 45, $60g/m^3{\cdot}hr$으로 나타내고 있다. toluene으로 순응된 살수여과탑에 styrene을 주입하여 순응시킨 후 styrene 제거 실험결과는 toluene 실험결과와 유사한 경향을 나타내었으나 전체적으로 제거효율이 낮게 나타났다. 순환살수액 유량 등의 적정 운전조건은 탑내 미생물의 활성도, 반응기 물리/화학적 특성에 따라 물질전달, 탑내 주입된 공기의 분배, 살수액 통과 경로, 미생물 분포도, 공극율 등에 따라 제거효율이 달라지므로 이를 고려한 적정 운전조건이 결정되어야 한다.

Keywords

References

  1. C. Kennes and M. C. Veiga, Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers (2001)
  2. Y. S. Won and M. A. Deshusses, J. Korean Soc. Atmo. Environ., 19, 101 (2003)
  3. J. H. Kim, S. H. Park, C. H. Park, and H. S. Park, J. Korean Soc. Waste Manage., 21, 288 (2004)
  4. A. M. Kosteltz, A. Finkelstein, and G. Sears, Air & Waste Manage. Assoc. 89th Annual Conference and Exhibition, Pittsburgh, PA, paper #96-RA87B.02 (1996)
  5. Y. S. Won and J. Korean Ind. Eng. Chem., 16, 474 (2005)
  6. J. S. Devinny, M. A. Deshusses, and T. S. Webster, Biofiltration for air pollution control, Lewis publisher (1999)
  7. Y. S. Won, Clean Technology, 13, 1 (2007)
  8. H. H. J. Cox and M. A. Deshusses, Biotechnol. Bioeng., 62, 216 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<216::AID-BIT12>3.0.CO;2-4
  9. Y. S. Won, T. J. Lee, Y. P. Wu, and M. A. Deshusses, J. Ind. Eng. Chem., 10, 60 (2004) https://doi.org/10.1021/ie50097a025
  10. C. J. Mpanias and B. C. Baltzis, Biotechnol. Bioeng., 59, 328 (1998) https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<328::AID-BIT9>3.0.CO;2-D
  11. C. Kennes and F. Thalasso, J. Chem. Technol. Biotechnol., 72, 303 (1998) https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  12. J. E. Amoore and E. Hautala, J. Appl. Toxicol. 3, 272 (1983) https://doi.org/10.1002/jat.2550030603
  13. G. Leson and A. M. Winer, J. Air Waste Manage. Assoc., 41, 1045 (1991) https://doi.org/10.1080/10473289.1991.10466898
  14. M. A. Deshusses and H. H. J. Cox, Encyclopaedia Environmental Microbiology, McGraw Hill (2001)
  15. H. H. J. Cox and M. A. Deshusses, Wat. Res., 33, 2383 (1999) https://doi.org/10.1016/S0043-1354(98)00452-7