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Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or 
end-of-life products while satisfying the demand of their parts or components over a given planning horizon. 
This paper considers the two-level disassembly structure that describes a direct relationship between the used 
product and its parts or components. To formulate the problem mathematically, we first suggest an integer 
programming model, and then reformulate it to a dynamic programming model after characterizing properties of 
optimal solutions. Based on the dynamic programming model, we develop a polynomial exact algorithm and 
illustrate it with an example problem.
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1. Introduction

Disassembly is defined as a systematic method for 
separating a product into its constituent parts or com-
ponents, subassemblies, or other groupings with nec-
essary sorting operations in a non-destructive or mar-
ginally destructive way. Due to its importance in the 
recovery of used or end-of-life products and even in 
the disposal of hazardous materials, much attention 
has been given to disassembly. In the meantime, vari-
ous decision problems, such as design for disassembly, 
disassembly process planning, and disassembly sched-
uling, have been emerged in the disassembly area. For 

literature reviews on these, see Boothroyd and Alting 
(1992), Jovane et al. (1993), Gupta and McLean 
(1996), Xirouchakis and Kiritsis (1996, 1997), O’Shea 
et al. (1998), Erdös et al. (2001), Kang et al. (2001, 
2002, 2003), Lambert (2003), Lee et al. (2001), Moore 
et al. (2001), Santochi et al. (2002), Lambert and 
Gupta (2005), and Kang and Xirouchakis (2006).

This paper focuses on disassembly scheduling, one 
of the important operational problems in disassembly 
systems. In general, disassembly scheduling can be de-
fined as the problem of determining the quantity and 
timing of disassembling used or end-of-life products 
while satisfying the demand of their parts or compo-
nents over a given planning horizon. In fact, dis-
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assembly scheduling corresponds to production plan-
ning in assembly systems. However, due to the differ-
ence in the number of demand sources, disassembly 
scheduling is known to be more complicated than the 
ordinary production planning problems (Gupta and 
Taleb 1994). In other words, parts or components con-
verge into a single demand source of the product in the 
assembly environment, while in the disassembly envi-
ronment, the product diverges into multiple demand 
sources of parts or components. This limits the applic-
ability of the ordinary production planning algorithms 
to disassembly systems.

The previous research on disassembly scheduling 
can be classified according to the number of product 
types and parts commonality. (See Kim et al. (2007) 
for a review of models, algorithms, and future research 
topics for disassembly scheduling.) Here, the parts 
commonality implies that used products or their sub-
assemblies share their parts and/or components. For 
the problem with single product type without parts 
commonality, Gupta and Taleb (1994) suggest a mate-
rial requirement planning (MRP) based algorithm 
without explicit objective function after showing that it 
is a reversed form of the MRP. Also, Lee et al. (2004) 
suggest a two-stage heuristic algorithm for the ob-
jective of minimizing various costs related to dis-
assembly systems, in which an initial solution is ob-
tained using the MRP based algorithm suggested by 
Gupta and Taleb (1994) and it is improved iteratively 
while considering the trade-offs among different cost 
factors. Lee et al. (2002) suggest an integer program-
ming model for the case with resource capacity con-
straints to represent and solve the problem optimally, 
based on the fact that the problem can be regarded as a 
reversed form of the multi-level capacitated lot sizing 
problem. (See Kim et al. (2006b, c) for other capaci-
tated models.) For the problem with single product 
type and parts commonality, Taleb et al. (1997) sug-
gest another MRP-like algorithm for the objective of 
minimizing the number of products to be disassem-
bled. Also, Neuendorf et al. (2001) give an improved 
solution for the example of Taleb et al. (1997) using 
their Petri-net based algorithm. Finally, for the prob-
lem with multiple product types with parts common-
ality, Taleb and Gupta (1997) suggest a heuristic algo-
rithm for the objective of minimizing the disassembly 
costs of used products, and Kim et al. (2003) suggest a 
linear programming (LP) relaxation heuristic for the 
objective of minimizing the sum of setup, inventory 
holding and disassembly operation costs, in which the 

solutions obtained from the LP relaxation are modified 
considering the cost changes, and later it is improved 
by Kim et al. (2006a). Also, Lee et al. (2004) suggest 
integer programming models for all the cases and the 
computational results show that their performance 
highly depends on problem data such as the number of 
items and periods, and Langella (2007) recently sug-
gested a heuristic algorithm that modifies the algo-
rithm of Taleb and Gupta (1997) with respect to the 
limited purchase quantity and disposal options. For a 
special case of this case, Inderfurth and Langella (2006) 
consider a single-period version of the problem with 
two-level disassembly structure as well as random 
yields of parts obtained by disassembling used pro-
ducts. Here, the two-level structure describes a direct 
relationship between the used product to be disassem-
bled and its parts or components obtained from dis-
assembling the used product without considering the 
intermediate subassemblies explicitly.

In this paper, we consider a deterministic version of 
the problem, which was considered by Inderfurth and 
Langella (2006). Also, we consider the problem with 
single product type and therefore, the parts common-
ality does not exist in the disassembly structure. To 
solve the problem, we suggest an exact algorithm that 
can give optimal solutions in polynomial time. Funda-
mentally, the disassembly scheduling problem consid-
ered in this paper is closely related to the economic 
lot-sizing problem. (For example, see Aggarwal and 
Park (1993), Federgruen and Tzur (1991), Wagelmans 
et al. (1992), and Wagner and Whitin (1958) for more 
details on the economic lot-sizing problem.) Com-
pared with the economic lot-sizing problem, however, 
the problem considered here has some special chara-
cteristics. First, as stated earlier, demand occurs in the 
level of part and/or component, not in the level of pro-
duct, which results in multiple demand sources. Se-
cond, in the disassembly scheduling problem, there are 
interdependencies between parts (or components) ob-
tained from disassembling the used products. That is, 
disassembly operations are done to satisfy the demand 
of parts and/or components, and hence the parts and/or 
components affect each other.

To describe the problem mathematically, an integer 
programming model is suggested in the next section. 
In Section 3, the integer programming model is re-
formulated as a dynamic programming model after 
characterizing the properties of optimal solutions, and 
based on the dynamic programming model, an exact 
algorithm is suggested by which the optimal solutions 
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can be obtained in polynomial time. Also, the algo-
rithm incorporates an additional property that can re-
duce the computation time. To illustrate the exact al-
gorithm, an example problem is solved in Section 4. 
Finally, Section 5 concludes the paper with a summary 
and discussion of future research.

2. Problem Description

We begin with explaining the two-level disassembly 
structure. The first level represents a single root item, 
i.e., the used product itself to be disassembled (or-
dered), while the second one represents leaf items, i.e., 
the items not to be disassembled further. Each leaf 
item is a part, a component or a subassembly that re-
sults from disassembling the product. Note that those 
leaf items are multiple demand sources as described 
earlier. An example of the two-level disassembly st-
ructure is given in <Figure 1>, in which the number in 
each parenthesis represents the yield of the corre-
sponding leaf item obtained from the root item. In this 
case, the root item is disassembled into two units of 
leaf item 1, three units of leaf item 2, and one unit of 
leaf item 3.

1 32

0

(3)(2) (1) Two-level

1 32

0

(3)(2) (1) Two-level

Figure 1. Two-level disassembly structure

For a given two-level disassembly structure, the 
problem is to determine the disassembly schedule of 
the root item while satisfying the demand of leaf items 
over a given planning horizon for the objective of min-
imizing the sum of setup and inventory holding costs. 
Here, the planning horizon consists of discrete plan-
ning periods. Like the production planning problem in 
assembly systems, the basic trade-off between the set-
up and the inventory holding costs is an important 
consideration in disassembly systems. Note that in dis-
assembly systems, the amount of inventory is high due 
to the divergence nature of the disassembly process, 
and the setup cost is an important consideration due to 
the batch process with large manual setup time (Kang 
et al., 2001, 2002, 2003). The setup cost, which is spe-

cific for the root item, implies the cost required when 
preparing its disassembly. In this paper, the setup cost 
for the root item in a period is assumed to occur if any 
disassembly operation is performed in that period. The 
inventory holding costs occur when leaf items are held 
in order to satisfy future demand, and they are com-
puted based on the end-of-period inventory. Also, it is 
assumed that the disassembly operation cost, which is 
proportional to the labor or machine processing time 
required for performing the disassembly operation, is 
constant over the planning periods, and hence it can be 
eliminated from the problem.

Other assumptions made in this paper are summar-
ized as follows : (a) there is no shortage of the used 
products ordered, i.e., used products can be obtained 
whenever they are ordered; (b) demands of parts or 
components are given and deterministic; (c) back-
logging is not allowed, and hence demand should be 
satisfied on time; and (d) parts and/or components are 
perfect in quality, i.e., no defective parts or compo-
nents are considered.

For a clear definition of the problem, the problem 
considered in this paper is formulated as an integer 
programming model. Note that the model is not used 
to solve the problem because of its complexity. 
Instead, as stated earlier, we reformulate it to a dynam-
ic programming model. Before describing the integer 
programming model, the notations are summarized 
below.

i : index for leaf items, i = 1, 2, …, N (The root item 
is not specified to simplify the notations.)

t : index for periods, t = 1, 2, …, T
st : setup cost for disassembling the root item in peri-

od t 
hit : inventory holding cost of one unit of leaf item i 

in period t 
dit : demand of leaf item i in period t 
ai : yield of leaf item i obtained from disassembling 

one unit of the root item 
M : an arbitrary large number
Yt = 1 if setup for disassembling the root item occurs 

in period t, and 0 otherwise 
Iit : inventory level of leaf item i at the end of peri-

od t
Xt : disassembly quantity of the root item in period t
lt : last setup period in t-period subproblem

Now, the integer programming model is given 
below.
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[P] Minimize 
1 1 1

NT T

t t it it
t i t

s Y h I
= = =

⋅ + ⋅∑ ∑∑
subject to
 , 1−= + ⋅ −it i t i t itI I a X d

for  i = 1, 2, …, N  and t = 1, 2, …, T        (1)
≤ ⋅t tX M Y for  t = 1, 2, …, T     (2)
{0,1}tY ∈ for  t = 1, 2, …, T     (3)
0≥itI for  i = 1, 2, …, N  and t = 1, 2, …, T     (4)
0≥tX  and integer for  t = 1, 2, …, T     (5)

The objective function denotes the sum of setup and 
inventory holding costs. Constraint (1) defines the in-
ventory level of leaf items at the end of each period, 
called the inventory flow conservation constraint, and 
ensures that at the end of each period, the inventory is 
equal to that at the end of the previous period, in-
creased by the disassembly quantity of the root item 
multiplied by the yield from the root item in that peri-
od, and decreased by the demand quantity in that 
period. A schematic description of the inventory flow 
conservation constraint is shown in <Figure 2>. Note 
that no inventory flow conservation constraint is need-
ed for the root item because its surplus-inventory re-
sults in unnecessary increase in the total cost. Con-
straint (2) guarantees that a setup cost in a period is in-
curred whenever there is at least one disassembly op-
eration at that period. Constraints (3), (4), and (5) rep-
resent the conditions on decision variables. In partic-
ular, constraint (4) ensures that backlogging is not 
allowed.

I1t

a1 ּ Xt

N

root item

I1,t–1

d1t

I2,t–1

a2 ּ Xt

aN ּ Xt

d2t

I2t

IN,t–1 IN,t

dN,t

1

2

I1t

a1 ּ Xt

N

root item

I1,t–1

d1t

I2,t–1

a2 ּ Xt

aN ּ Xt

d2t

I2t

IN,t–1 IN,t

dN,t

1

2

Figure 2. Inventory flow conservation in period t

3. Polynomial Exact Algorithm

This section presents the exact algorithm that can give 
optimal solutions in polynomial time. Before describ-

ing the exact algorithm, two properties that character-
ize the optimal solutions are derived to reduce the sol-
ution space, and using the two properties, the integer 
programming model [P] described in Section 2 is tran-
sformed into a simple dynamic program. Then, based 
on the dynamic program, the exact algorithm is ex-
plained which incorporates an additional property that 
can reduce the computation times.

The two theorems that characterize the optimal sol-
utions are given below.

Theorem 1 : For the disassembly scheduling problem 
[P], there exists an optimal solution that satisfies

, 1

1,2, ,
min 0−

=

⎢ ⎥
⋅ =⎢ ⎥

⎣ ⎦
i t

t
i N i

IX
a

 for t = 1, 2, …, T,     (6)

where 󰀚•󰀛 denotes the largest integer that is less 
than or equal to •.

Proof : Suppose that there is an optimal solution Xj for 
j = 1, 2, …, T such that

, 1

1, 2, ,
min 0−

=

⎢ ⎥
⋅ >⎢ ⎥

⎣ ⎦
i t

t
i N i

IX
a

,

i.e., Xt > 0 and Ii,t-1 ≥ ai for all i =1, 2, …, N, in period 
t. Let k < t be the period such that Xk > 0 and Xj = 0 for 
j = k + 1, …, t - 1 and set 

, 1

1, 2, ,
min −

=

⎢ ⎥
= ⎢ ⎥

⎣ ⎦

i t

i N
i

I
L

a
.

Consider an alternative solution jX ′ ,  j = 1, 2, …, T, in 
which k kX X L′ = − and j jX X′ =  for all j ≠ k, such 
that

, 1

1, 2, ,
min 0−

=

′⎢ ⎥
=⎢ ⎥

⎣ ⎦

i t

i N
i

I
a

and hence the alternative solution satisfies (6) in peri-
od t. Here, itI ′  is the inventory level of item i in period 
t corresponding to the alternative solution. In other 
words, we reduce the disassembly quantity in period k 
as much as L so that (6) is satisfied. Then, the alter-
native solution reduces the sum of the inventory hold-
ing costs of the leaf items from period k to t - 1 corre-
sponding to L, i.e., 
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1

1

N t

iu i
i u k

h a L
−

= =
⋅ ⋅∑∑ .

From this, we can see that the current solution Xj,  j = 
1, 2, …, T, can be improved and hence is not optimal. 
This leads to a contradiction.  ■

Theorem 1 is an extension of the zero-inventory 
property of Wagner and Whitin (1958). Note that this 
theorem can be applied to the case with zero initial in-
ventories or with 0

1,2, ,
min / 0

=
=⎢ ⎥⎣ ⎦i i

i N
I a . However, in 

the case with positive initial inventories satisfying  

0

1, 2, ,
min 0

=

⎢ ⎥
>⎢ ⎥

⎣ ⎦
i

i N i

I
a

,

the method suggested by Zabel (1964) can be used af-
ter a simple modification. The basic idea is as follows 
: (a) for leaf item i with Ii0 ≤ di1, set its initial in-
ventory to zero and its demand in period 1 to di1-Ii0; 
(b) for leaf item i with Ii0 > di1, there is a period t such 
that 1

01 1
t t

ik i ikk kd I d+
= =< ≤∑ ∑ . Then, set its initial in-

ventory and its demands over periods 1, 2, …, t to 
zero, and its demand in period t + 1 to 1

01
t

ik ik d I+
= −∑ . 

Then, the original problem with positive initial in-
ventories can be transformed into the one with zero in-
itial inventories. 

Theorem 1 implies that the disassembly quantity in 
period t, Xt, is either zero or the quantity to satisfy the 
demands of all leaf items from period t to some period 
k, t ≤ k ≤ T.  Note that the demands of the leaf items 
can be satisfied by those obtained from disassembling 
the root item by the amount to satisfy the largest one 
among the demands of all leaf items. More specifi-
cally, the exact disassembly quantity in a certain peri-
od can be specified using the following theorem.

Theorem 2 : In the optimal solution of the disassem-
bly scheduling problem [P], 

, 1

1, 2, ,
max −=

=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎢ ⎥

∑T
ik i tk t

t i N
i

d I
X  

a
 and 

Xj = 0,  for  t < j ≤ T,

where { }
1,2,...,
max | 0kk T

t k X
=

= > and 󰀎•󰀏 denotes the 
smallest integer that is greater than or equal to •.

Proof : The net demand of leaf item i that should be 
satisfied from period t to T is 

, 1−
=

−∑
T

ik i t
k t

d I .

Then, the optimal disassembly quantity in period t, Xt, 
can be determined as the maximum among the values 
obtained from dividing the net demand of all leaf 
items by the yield of each leaf item from the root item 
and then rounding up. More formally, 

, 1

1, 2, ,
max −=

=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎢ ⎥

∑T
ik i tk t

t i N
i

d I
X  

a
.

Note that other values of Xt (except for the above) do 
not satisfy Theorem 1. Therefore, we can see that the 
optimal disassembly quantities in the other periods 
should be all zero, i.e.,  Xj = 0 for t < j ≤ T.  ■

Theorem 2 specifies the disassembly quantity to sat-
isfy the demands from period t to T. In other words, if 
we set Xt to the quantity specified in Theorem 2, the 
demands of all leaf items from period t to T can be sat-
isfied automatically. However, it may result in indis-
pensable surplus-inventories of the leaf items since the 
requirement of each leaf item should be divided by the 
yield of the corresponding leaf item. Note that the ex-
istence of the surplus-inventories is one of the differ-
ences between the problem considered here and the 
conventional economic lot-sizing problem. 

Now, from Theorem 2, we can see that the problem 
can be decomposed into subproblems. For a given 
problem, suppose that the last setup occurs in period t, 
2 ≤ t ≤ T, i.e., 

, 1

1, 2, ,
max −=

=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎢ ⎥

∑T
ik i tk t

t i N
i

d I
X  

a and 
Xj = 0  for j = t + 1, …, T.

Then, the entire problem can be solved after decom-
posing it into one from period 1 to t-1 and the other 
from period t to T. Here, according to Theorem 1, the 
subproblem from period 1 to t-1 should satisfy  

, 1

1, 2, ,
min 0−

=

⎢ ⎥
=⎢ ⎥

⎣ ⎦
i t

i N i

I
a

 so that , 1

1, 2, ,
min 0.−

=

⎢ ⎥
=⎢ ⎥

⎣ ⎦
i t

t
i N i

IX
a

To determine the optimal solution of the entire prob-
lem, T alternatives of the decomposition should be 
compared, and the best one should be selected since 
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the last setup may occur in one of the periods from 1 
to T. 

Based on the decomposition described above, we 
can transform the integer programming model [P] into 
a dynamic programming model. Note that the straight-
forward method to obtain the optimal solution is to 
enumerate 2T combinations of either performing dis-
assembly or not in each period. Instead, in this paper, 
we develop an exact algorithm that can solve the prob-
lem in polynomial time. That is, each subproblem ob-
tained from the decomposition is solved recursively, 
starting from the 1-period subproblem and ending at 
the T-period subproblem. Here, the t-period subpro-
blem denotes the subproblem from period 1 to t. 

Now, the dynamic programming model is explained. 
Suppose that demands of the leaf items from period j 
to t (1 ≤ j ≤ t) are satisfied in period j. According to 
Theorem 2, the disassembly quantity in period j, Xj, 
can be determined as 

, 1

1, 2, ,
max ,−=

=

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎢ ⎥

∑t
ik i jk j

j i N
i

d I
X

a
(7)

where the inventory Ii,j-1 can be obtained from solving 
the (j-1)-period subproblem. Also, the inventory level 
of leaf item i at the end of period k (j ≤ k ≤ t) can be 
represented as 

, 1

, 1

for

for 1, 2, , .

−

−

+ ⋅ − =⎧⎪= ⎨
− = + +⎪⎩

i k i j ik

ik

i k ik

I a X d k j
I

I d k j j t
(8)

Given (7) and (8), the dynamic programming model 
can be represented as follows. In the formulation, F(t) 
denotes the optimal cost function for period 1 through t.

[P']
1 1

( ) min ( 1)
≤ ≤ = =

⎧ ⎫
= ⋅ + + −⎨ ⎬

⎩ ⎭
∑∑
N t

ik ik j
j t i k j

F t h I s F j ,

where F(0) = 0. This recursive function consists of the 
inventory holding costs (of all leaf items) occurred 
from period j to t, the setup cost (of the root item) oc-
curred in period j, and the optimal cost function for pe-
riod 1 through j-1. Therefore, the optimal solution can 
be obtained by computing F(t) recursively, starting 
from period 1 and ending at period T. 

Now, we can derive another property that can reduce 
the amount of computation when obtaining the optimal 
solution. The following theorem summarizes this pro-

perty. 

Theorem 3 : In the dynamic program [P' ], suppose 
that an optimal solution for the u-period subproblem, 
i.e., the subproblem from period 1 to u, is obtained with 
the last setup in period lu. Then, for the v-period sub-
problem (v > u), there exists an optimal solution that 
has the last setup at period lv ≥ lu,

Proof : Suppose that an optimal solution for a v-period 
subproblem is obtained with the last setup in period j < 
lu. Then, from the definition of optimal function,

1
( 1)

N v

ik ik j
i k j

h I s F j
= =

⋅ + + −∑∑

         
1

( 1)
u

u

N v

ik ik l u
i k l

h I s F l
= =

≤ ⋅ + + −∑∑ .

Separating these functions by period u,

1 1 1
( 1)

N u N v

ik ik ik ik j
i k j i k u

h I h I s F j
= = = = +

⋅ + ⋅ + + −∑∑ ∑ ∑

     
1 1 1

( 1)
u

u

N u N v

ik ik ik ik l u
i k l i k u

h I h I s F l
= = = = +

≤ ⋅ + ⋅ + + −∑∑ ∑ ∑ .

Taking out the second term in each function and re-
writing results in

      
1

( 1)
N u

ik ik j
i k j

h I s F j
= =

⋅ + + −∑∑

1
( 1)

u
u

N u

ik ik l u
i k l

h I s F l
= =

≤ ⋅ + + −∑∑ . (9)

However, (9) violates the optimality that the last setup 
of the u-subproblem occurs in period lu, which leads to 
a contradiction.  ■

Theorem 3, which is an extension of the planning 
horizon theorem of Wagner and Whitin (1958), can re-
duce the amount of computation in such a way that we 
need to consider only periods lu, lu + 1, …, v (without 
periods 1, 2, …, lu-1) when the optimal solution is ob-
tained for the v-period subproblem. Here, lu is the last 
setup period for the u-period subproblem (u < v). For 
example, suppose that the last setup occurs in period 3, 
i.e., l4 = 3, in the 4-period subproblem. Then, when 
solving the 5-period subproblem, it is needed to con-
sider only periods 3, 4 and 5 and the remaining periods 
1 and 2 can be excluded from consideration. 

Now, the exact algorithm is summarized below. 
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Procedure 1. (Exact algorithm)
Step 1 : Set t = 1, F(0) = 0, and l0 = 1.
Step 2 : For a t-period subproblem, do the following 

steps : 
1) Set      (by Theorem 3). (Demands of 

all leaf items from period j to t are sat-
isfied in period j.) 

2) Calculate the disassembly quantity Xj in 
period j using

, 1

1,2, ,
max −=

=

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎢ ⎥

∑t
ik i jk j

j i N
i

d I
X

a

3) Calculate the inventory levels of all leaf 
items from period j to t using

, 1

, 1

for

for 1, 1, ,

−

−

+ ⋅ − =⎧⎪= ⎨
− = + +⎪⎩

i k i j ik

ik

i k ik

I a X d k j
I

I d k j j t

4) Calculate the total cost Cjt when a setup 
occurs in period j for the t-period sub-
problem using

1
( 1)

N t

jt ik ik j
i k j

C h I s F j
= =

= ⋅ + + −∑∑

5) Set j = j + 1. If j > t, go to Step 3. 
Otherwise, go (2).

Step 3 : Calculate the optimal solution value and the 
last setup period lt using

1 1, 1, ,
( ) min

− −= +
=

t t
ktk l l t

F t C  and 
1 1, 1, ,
min { | }

− −= +
=

t t
t ktk l l t

l k C , 
and update Iit, i = 1, 2, …, N.

Step 4 : Set t = t + 1. If t ≤ T, go to Step 2, and oth-
erwise, stop. 

The exact algorithm given above has a polynomial 
time bound. More specifically, in a t-period subpro-
blem, the followings can be calculated in O (N․T 2) : 
disassembly quantity Xj in period j; the total cost Cjt 
when a setup occurs in period j; and the inventory lev-
els for all leaf items from period j to t. Here, N and T 
denote the number of leaf items and the number of pe-
riods, respectively. Also, the optimal solution value 
F(t) and the last setup period lt are calculated in O(T) 
time. Therefore, the complexity of the algorithm be-
comes O(N․T 3) since there are T subproblems in 

total.
In fact, the exact algorithm given above extends the 

well-known Wagner-Whitin algorithm according to 
the characteristics of the disassembly problem consid-
ered in this paper, i.e., multiple demand sources and 
interdependency among leaf items. Note that the 
Wagner-Whitin algorithm is only for the assembly 
systems and cannot be applied directly to the problem 
considered here. Richer and Sombrutzki (2000) and 
Richer and Weber (2001) suggest the reverse Wagner- 
Whitin algorithms for the problems in which used 
products are returned to be stored and remanufactured 
to satisfy demands of the product over a planning 
horizon. Their algorithms, however, use the Wagner- 
Whitin algorithm as it is or after a simple mod-
ification, since their problems have the characteristics 
of the assembly systems, i.e., single demand source 
and hence no interdependency among items. Unlike 
these, in this paper, we derive an extended zero-in-
ventory property according to the unique character-
istics of the disassembly systems, and suggest a new 
exact algorithm. Note that the reverse Wagner-Whitin 
algorithms could be applied to the problems with sin-
gle demand source.

4.  An Example

In this section, the exact algorithm is illustrated 
using an example. The example has the disassembly 
structure described in <Figure 1> and the demand of 
leaf items (dit), setup costs (st), and inventory hold-
ing costs of leaf items (hit) are summarized in 
<Table 1>. The initial inventory level of each leaf 
item is set to 0.

We begin the exact algorithm from the 1-period 
subproblem. First, the disassembly quantity X1 can be 
determined as

   1 0
1 1,2,3

max i i

i
i

d IX
a=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥

     
50 0 37 0 45 0max , , 45.

2 3 1
⎧ ⎫− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎩ ⎭

Then, the inventory levels of all leaf items, i.e., Ii1, 
for i = 1, 2, and 3, can be calculated as 

   1,1 1,0 1 1 1,1 0 2 45 50 40I I a X d= + ⋅ − = + ⋅ − = ,
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Table 1. Problem data of the example

Planning period (t)
1 2 3 4 5 6 7 8 9 10

d1t 50 153 36 61 176 26 134 67 121 67
d2t 37 46 198 134 68 155 29 130 44 149
d3t 45 34 44 28 43 67 48 34 66 56
st 1050 1020 1020 1010 1080 1140 1050 1060 1190 1100
h1t 1 5 3 4 2 3 1 1 3 1
h2t 3 2 3 5 5 1 3 2 2 4
h3t 3 1 2 4 3 2 5 3 1 2

   2,1 2,0 2 1 2,1 0 3 45 37 98I I a X d= + ⋅ − = + ⋅ − = , and
   3,1 3,0 3 1 3,1 0 1 45 45 0I I a X d= + ⋅ − = + ⋅ − = .

Now, the optimal solution value F(1) of this sub-
problem, i.e., the total cost C11 of the 1-period sub-
problem, is as follows.

3

1,1 1 1 1
1

(1) (0)i i
i

F C h I s F
=

= = ⋅ + +∑  

  1 40 3 98 3 0 1050 0 1384= ⋅ + ⋅ + ⋅ + + =

In the 1-period subproblem, the last setup period be-
comes 1, i.e., l1 = 1, since disassembly can take place 
only at period 1. 

Next, we consider the 2-period subproblem. In this 
problem, two alternatives are available : (a) disassem-
bly operation is done only at period 1; and (b) dis-
assembly operations are done at periods 1 and 2, 
respectively. In the former case, the disassembly quan-
tity in period 1 (X1) should cover the demands in peri-
ods 1 and 2, and can be determined as

1
50 153 37 46 45 34max , ,

2 3 1
⎧ ⎫+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎩ ⎭

X

         102= . 

Also, the resulting inventory levels of all leaf items 
in periods 1 and 2 can be calculated as 

1,1 0 2 102 50 154I = + ⋅ − = ,
1,2 154 2 0 153 1I = − ⋅ − = ,
2,1 0 3 102 37 269I = + ⋅ − = ,
2,2 269 3 0 46 223I = − ⋅ − = ,
3,1 0 1 102 45 57I = + ⋅ − = , and 
3,2 57 1 0 34 23I = − ⋅ − = .

In the latter case, the disassembly quantity in period 
1, X1, is the same as that of the 1-period subproblem, 
and the disassembly quantity in period 2, X2, can be 
determined as

2
153 40 46 98 34 0max , , 57,

2 3 1
⎧ ⎫− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎩ ⎭

X

where 40, 98, and 0 are the surplus-inventories result-
ing from solving the 1-period problem. Also, the re-
sulting inventory levels become

1,2 40 2 57 153 1I = + ⋅ − = ,
2,2 98 3 57 46 223I = + ⋅ − = , and
3,2 0 1 57 34 23I = + ⋅ − = .

Finally, the optimal policy in the 2-period subpro-
blem is to choose the period with the lowest total cost 
between the two options. That is,

3 2

1,2 1
1 1

3

2,2 2 2 2
1

(0)

1 154 3 269 3 57 5 1
2 223 1 23 1050 0 2656,

(2) min
(1)

5 1 2 223 1 23
1020 1384 2878.

= =

=

⎧ = ⋅ + +⎪
⎪

= ⋅ + ⋅ + ⋅ + ⋅⎪
⎪ + ⋅ + ⋅ + + =⎪= ⎨
⎪ = ⋅ + +
⎪
⎪ = ⋅ + ⋅ + ⋅⎪
⎪ + + =⎩

∑∑

∑

it it
i t

i i
i

C h I s F

F
C h I s F

From the above, we can see that the optimal policy 
is to select the case that disassembly operation takes 
place at period 1. Therefore, the last setup period in 
the 2-period subproblem is 2, i.e., l2 = 1.

The subproblems for the remaining periods, i.e., 
from 3-period to 10-period subproblems, were solved 
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Table 2. Solution value of each subproblem for the example

Setup 
period (j)

t-period subproblem

1 2 3 4 5 6 7 8 9 10

1 1384(45)† 2656(102) 3592(123) −‡ − − − − − −

2 2878(57) 3520(78) 4670(106) − − − − − −

3 3961(21) 4635(49) 9750(136) − − − − −

4 4728(28) 8364(115) − − − − −

5 7002(87) 7713(110) 10500(167) − − −

6 8347(23) 9880(80) − − −

7 9669(57) 10759(91) 13172(151) −

8 11275(34) 12728(94) 15659(147)

9 12742(60) 15090(113)

10 15487(53)

F(t) 1384 2656 3520 4635 7002 7713 9669 10759 12728 15090

lt 1 1 2 3 5 5 7 7 8 9

 Note) † : total cost(Cjt) and disassembly quantity(in parenthesis) when a setup in period j occurs in the t-period subproblem.
‡: unnecessary calculations by Theorem 3.

Table 3. Optimal solution of the example

Planning period(t)
1 2 3 4 5 6 7 8 9 10

I1t 154 1 63 2 46 20 68 1 106 39
I2t 269 223 172 38 300 145 389 259 554 405
I3t 57 23 28 0 67 0 43 9 56 0
Xt 102 0 49 0 110 0 91 0 113 0

using the same procedure described above, and the re-
sults are summarized in <Table 2> that shows the total 
costs, the optimal solution values, and the last setup 
period for each subproblem, i.e., Cjt, F(t), and lt for j 
≤ t = 1, 2, …, T. Note that the dashes in the table im-
ply the unnecessary calculations to obtain the optimal 
solution (Theorem 3).

The optimal solution of the example is given in 
<Table 3>, which shows the disassembly schedule of 
the root item and the resulting inventory levels of the 
leaf items. In the optimal solution, we can see that set-
ups occur in periods 1, 3, 5, 7, and 9 with the corre-
sponding disassembly quantities 102, 49, 110, 91 and 
113, respectively. Note that there are surplus-inven-
tories at the end of the planning horizon. They can be 
disposed or used for the next planning horizon, which 
is one of important practical problems in disassembly 
systems.

5.  Concluding Remarks

We considered the problem of determining the quan-
tity and timing of disassembling used or end-of-life 
products while satisfying the demands of their parts or 
components over a given planning horizon. The main 
focus was the case with a direct relationship between a 
product and its parts or components, i.e., two-level 
disassembly structure, for the objective of minimizing 
the sum of setup and inventory holding costs. The 
problem was formulated as an integer programming 
model, which was reformulated as a dynamic pro-
gramming model after the properties of optimal sol-
utions were characterized. Then, based on the dynamic 
programming model, an exact algorithm has been 
demonstrated in which the optimal solutions can be 
obtained in polynomial time.
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This research can be extended in several ways. First, 
it is needed to consider more general problems, such 
as those with multi-level product structure, multiple 
product types and/or resource capacity constraints, in 
which the exact algorithm suggested in this paper may 
be used to solve their subproblems. In particular, the 
parts commonality is an important consideration in the 
case of multiple product types. Second, like other dis-
assembly problems, uncertainties, such as defective 
parts or components, and stochastic demands and lead 
times, are important considerations.
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