DOI QR코드

DOI QR Code

Wnt signaling in cartilage development and degeneration

  • Chun, Jang-Soo (Cell Dynamics Research Center, Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Oh, Hwan-Hee (Cell Dynamics Research Center, Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Yang, Si-Young (Cell Dynamics Research Center, Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Park, Mee-Young (Cell Dynamics Research Center, Department of Life Science, Gwangju Institute of Science and Technology)
  • Published : 2008.07.31

Abstract

The Wnt signaling network, which is composed of Wnt ligands, receptors, antagonists, and intracellular signaling molecules, has emerged as a powerful regulator of cell fate, proliferation, and function in multicellular organisms. Over the past two decades, the critical role of Wnt signaling in embryonic cartilage and bone development has been well established, and much has been learnt regarding the role of Wnt signaling in chondrogenesis and cartilage development. However, relatively little is known about the role of Wnt signaling in adult articular cartilage and degenerative cartilage tissue. This review will briefly summarize recent advances in Wnt regulation of chondrogenesis and hypertrophic maturation of chondrocytes, and review data concerning the role of Wnt signaling in the maintenance and degeneration of articular chondrocytes and cartilage.

Keywords

References

  1. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
  2. Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L. and Moon, R. T. (1995) Identification of distinct classes and functional domains of Wnts through expression of wildtype and chimeric proteins in Xenopus embryos. Mol. Cell. Biol. 15, 2625-2634. https://doi.org/10.1128/MCB.15.5.2625
  3. Wong, G. T., Gavin, B. J. and McMahon, A. P. (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell. Biol. 14, 6278-6286. https://doi.org/10.1128/MCB.14.9.6278
  4. Kawano, Y. and Kypta, R. (2003) Secreted antagonists of the Wnt signalling pathway. J. Cell. Sci. 116, 2627-2634. https://doi.org/10.1242/jcs.00623
  5. Willert, K. and Jones, K. A. (2006) Wnt signaling: is the party in the nucleus? Genes. Dev. 20, 1394-1404. https://doi.org/10.1101/gad.1424006
  6. Montcouquiol, M., Crenshaw, E. B., 3rd and Kelley, M. W. (2006) Noncanonical Wnt signaling and neural polarity. Annu. Rev. Neurosci. 29, 363-386. https://doi.org/10.1146/annurev.neuro.29.051605.112933
  7. DeLise, A.M., Fischer, L. and Tuan, R.S. (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 8, 309-334. https://doi.org/10.1053/joca.1999.0306
  8. de Crombrugghe, B., Lefebvre, V., Behringer, R. R., Bi, W., Murakami, S. and Huang, W. (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19, 389-394. https://doi.org/10.1016/S0945-053X(00)00094-9
  9. Goldring, M. B., Tsuchimochi, K. and Ijiri, K. (2006) The control of chondrogenesis. J. Cell. Biochem. 97, 33-44. https://doi.org/10.1002/jcb.20652
  10. Chang, S. H., Oh, C. D., Yang, M. S., Kang, S. S., Lee, Y. S., Sonn, J. K. and Chun, J. S. (1998) Protein kinase C regulates chondrogenesis of mesenchymes via mitogen-activated protein kinase signaling. J. Biol. Chem. 273, 19213-19219. https://doi.org/10.1074/jbc.273.30.19213
  11. Yoon, Y. M., Oh, C. D., Kang, S. S. and Chun, J. S. (2000a) Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. J. Bone. Miner. Res. 15, 2197-2205. https://doi.org/10.1359/jbmr.2000.15.11.2197
  12. Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., Kang, S. S. and Chun, J. S. (2000) Opposing role of mitogen- activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613
  13. Yoon, Y. M., Oh, C. D., Kim, D. Y., Lee, Y. S., Park, J. W., Huh, T. L., Kang, S. S. and Chun, J. S. (2000) Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha, Erk-1, and p38 MAPK signaling pathways. J. Biol. Chem. 275, 12353-12359. https://doi.org/10.1074/jbc.275.16.12353
  14. Ikeda, T., Kawaguchi, H., Kamekura, S., Ogata, N., Mori, Y., Nakamura, K., Ikegawa, S. and Chung, U. I. (2005) Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone. Miner. Metab. 23, 337-340. https://doi.org/10.1007/s00774-005-0610-y
  15. Provot, S. and Schipani, E. (2005) Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun. 328, 658-665. https://doi.org/10.1016/j.bbrc.2004.11.068
  16. Kronenberg, H. M. (2003) Developmental regulation of the growth plate. Nature 423, 332-336. https://doi.org/10.1038/nature01657
  17. Shum, L. and Nuckolls, G. (2002) The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106.
  18. Sandell, L. J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107-113. https://doi.org/10.1186/ar148
  19. Caterson, B., Flannery, C. R., Hughes, C. E. and Little, C. B. (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 19, 333-344. https://doi.org/10.1016/S0945-053X(00)00078-0
  20. Pelletier, J. P., Martel-Pelletier, J. and Abramson, S. B. (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 44, 1237-1247. https://doi.org/10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F
  21. Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 54, 1357-1360. https://doi.org/10.1002/art.21813
  22. Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
  23. Shlopov, B. V., Lie, W. R., Mainardi, C. L., Cole, A. A., Chubinskaya, S. and Hasty, K. A. (1997) Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum. 40, 2065-2074. https://doi.org/10.1002/art.1780401120
  24. Imai, K., Ohta, S., Matsumoto, T., Fujimoto, N., Sato, H., Seiki, M. and Okada, Y. (1997) Expression of membrane- type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage. Am. J. Pathol. 151, 245-256.
  25. Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M. and Okada, Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446-2451. https://doi.org/10.1074/jbc.272.4.2446
  26. Okada, Y., Shinmei, M., Tanaka, O., Naka, K., Kimura, A., Nakanishi, I., Bayliss, M. T., Iwata, K. and Nagase, H. (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab. Invest. 66, 680-690.
  27. Wu, J. J., Lark, M. W., Chun, L. E. and Eyre, D. R. (1991) Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J. Biol. Chem. 266, 5625-5628.
  28. Brown, D. J., Bishop, P., Hamdi, H. and Kenney, M. C. (1996) Cleavage of structural components of mammalian vitreous by endogenous matrix metalloproteinase-2. Curr. Eye. Res. 15, 439-445. https://doi.org/10.3109/02713689608995835
  29. Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti- Morrow, L. L., Yocum, S. A., Rosner, P. J., Geoghegan, K. F. and Hambor, J. E. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761-768. https://doi.org/10.1172/JCI118475
  30. Hwang, S. G., Yu, S. S., Poo, H. and Chun, J. S. (2005) c-Jun/activator protein-1 mediates interleukin-1beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes. J. Biol. Chem. 280, 29780-29787. https://doi.org/10.1074/jbc.M411793200
  31. Kim, S. J., Ju, J. W., Oh, C. D., Yoon, Y. M., Song, W. K., Kim, J. H., Yoo, Y. J., Bang, O. S., Kang, S. S. and Chun, J. S. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
  32. Huh, Y. H., Kim, S. H., Kim, S. J. and Chun, J. S. (2003) Differentiation status-dependent regulation of cyclooxygenase- 2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J. Biol. Chem. 278, 9691-9697. https://doi.org/10.1074/jbc.M211360200
  33. Hwang, S. G., Ryu, J. H., Kim, I. C., Jho, E. H., Jung, H. C., Kim, K., Kim, S. J. and Chun, J. S. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J. Biol. Chem. 279, 26597-26604. https://doi.org/10.1074/jbc.M401401200
  34. Yoon, Y. M., Kim, S. J., Oh, C. D., Ju, J. W., Song, W. K., Yoo, Y. J., Huh, T. L. and Chun, J. S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412-8420. https://doi.org/10.1074/jbc.M110608200
  35. Kim, S. J. and Chun, J. S. (2003) Protein kinase C alpha and zeta regulate nitric oxide-induced NF-kappa B activation that mediates cyclooxygenase-2 expression and apoptosis but not dedifferentiation in articular chondrocytes. Biochem. Biophys. Res. Commun. 303, 206-211. https://doi.org/10.1016/S0006-291X(03)00305-X
  36. Kim, S. J., Kim, H. G., Oh, C. D., Hwang, S. G., Song, W. K., Yoo, Y. J., Kang, S. S. and Chun, J. S. (2002) p38 kinase- dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem. 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200
  37. Kim, S. J., Hwang, S. G., Shin, D. Y., Kang, S. S. and Chun, J. S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem. 277, 33501- 33508. https://doi.org/10.1074/jbc.M202862200
  38. Ryu, J. H., Kim, S. J., Kim, S. H., Oh, C. D., Hwang, S. G., Chun, C. H., Oh, S. H., Seong, J. K., Huh, T. L. and Chun, J. S. (2002) Regulation of the chondrocyte phenotype by beta-catenin. Development 129, 5541-5550. https://doi.org/10.1242/dev.00110
  39. Oh, C. D. and Chun, J. S. (2003) Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 278, 36563-36571. https://doi.org/10.1074/jbc.M304857200
  40. Kim, H. A., Lee, Y. J., Seong, S. C., Choe, K. W. and Song, Y. W. (2000) Apoptotic chondrocyte death in human osteoarthritis. J. Rheumatol. 27, 455-462.
  41. Blanco, F. J., Guitian, R., Vazquez-Martul, E., de Toro, F. J. and Galdo, F. (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 41, 284-289. https://doi.org/10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T
  42. Mansfield, K., Rajpurohit, R. and Shapiro, I. M. (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J. Cell. Physiol. 179, 276-286. https://doi.org/10.1002/(SICI)1097-4652(199906)179:3<276::AID-JCP5>3.0.CO;2-#
  43. Aigner, T. (2002) Apoptosis, necrosis, or whatever: how to find out what really happens? J. Pathol. 198, 1-4. https://doi.org/10.1002/path.1172
  44. Kuhn, K., Hashimoto, S. and Lotz, M. (1999) Cell density modulates apoptosis in human articular chondrocytes. J. Cell. Physiol. 180, 439-447. https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<439::AID-JCP15>3.0.CO;2-D
  45. Gruber, H. E., Norton, H. J. and Hanley, E. N., Jr. (2000) Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine 25, 2153-2157. https://doi.org/10.1097/00007632-200009010-00002
  46. Yates, K. E., Shortkroff, S. and Reish, R. G. (2005) Wnt influence on chondrocyte differentiation and cartilage function. DNA. Cell. Biol. 24, 446-457. https://doi.org/10.1089/dna.2005.24.446
  47. Church, V., Nohno, T., Linker, C., Marcelle, C. and Francis- West, P. (2002) Wnt regulation of chondrocyte differentiation. J. Cell. Sci. 115, 4809-4818. https://doi.org/10.1242/jcs.00152
  48. Tufan, A. C., Daumer, K. M. and Tuan, R. S. (2002) Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin. Dev. Dyn. 223, 241-253. https://doi.org/10.1002/dvdy.10046
  49. Stott, N. S., Jiang, T. X. and Chuong, C. M. (1999) Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J. Cell. Physiol. 180, 314-324. https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<314::AID-JCP2>3.0.CO;2-Y
  50. Daumer, K. M., Tufan, A. C. and Tuan, R. S. (2004) Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J. Cell. Biochem. 93, 526-541. https://doi.org/10.1002/jcb.20190
  51. Hartmann, C. and Tabin, C. J. (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341-351. https://doi.org/10.1016/S0092-8674(01)00222-7
  52. Rudnicki, J. A. and Brown, A. M. (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev. Biol. 185, 104-118. https://doi.org/10.1006/dbio.1997.8536
  53. Reinhold, M. I., Kapadia, R. M., Liao, Z. and Naski, M. C. (2006) The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J. Biol. Chem. 281, 1381-1388. https://doi.org/10.1074/jbc.M504875200
  54. Hwang, S. G., Yu, S. S., Lee, S. W. and Chun, J. S. (2005) Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 579, 4837-4842. https://doi.org/10.1016/j.febslet.2005.07.067
  55. Yano, F., Kugimiya, F., Ohba, S., Ikeda, T., Chikuda, H., Ogasawara, T., Ogata, N., Takato, T., Nakamura, K., Kawaguchi, H. and Chung, U. I. (2005) The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem. Biophys. Res. Commun. 333, 1300-1308. https://doi.org/10.1016/j.bbrc.2005.06.041
  56. Yang, Y., Topol, L., Lee, H. and Wu, J. (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003-1015. https://doi.org/10.1242/dev.00324
  57. Hartmann, C. (2007) Skeletal development-Wnts are in control. Mol. Cells. 24, 177-184.
  58. Kawakami, Y., Wada, N., Nishimatsu, S. I., Ishikawa, T., Noji, S. and Nohno, T. (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev. Growth. Differ. 41, 29-40. https://doi.org/10.1046/j.1440-169x.1999.00402.x
  59. Enomoto-Iwamoto, M., Kitagaki, J., Koyama, E., Tamamura, Y., Wu, C., Kanatani, N., Koike, T., Okada, H., Komori, T., Yoneda, T., Church, V., Francis-west, P. H., Kurisu, K., Nohno, T., Pacifici, M. and Iwamoto, M. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev. Biol. 251, 142-156. https://doi.org/10.1006/dbio.2002.0802
  60. Hartmann, C. and Tabin, C. J. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141-3159.
  61. Gaur, T., Rich, L., Lengner, C. J., Hussain, S., Trevant, B., Ayers, D., Stein, J. L., Bodine, P. V., Komm, B. S., Stein, G. S. and Lian, J. B. (2006) Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J. Cell. Physiol. 208, 87-96. https://doi.org/10.1002/jcp.20637
  62. Yamaguchi, T. P., Bradley, A., McMahon, A. P. and Jones, S. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211-1223.
  63. Wang, L., Shao, Y. Y. and Ballock, R. T. (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J. Bone. Miner. Res. 22, 1988-1995. https://doi.org/10.1359/jbmr.070806
  64. Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., Zhang, Z., Deng, J. M., Taketo, M. M., Nakamura, T., Behringer, R. R., Mccrea, P. D. and de Crambrugghe, B. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072-1087. https://doi.org/10.1101/gad.1171104
  65. Dong, Y., Drissi, H., Chen, M., Chen, D., Zuscik, M. J., Schwarz, E. M. and O'Keefe, R. J. (2005) Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J. Cell. Biochem. 95, 1057-1068. https://doi.org/10.1002/jcb.20466
  66. Dong, Y. F., Soung do, Y., Schwarz, E. M., O'Keefe, R. J. and Drissi, H. (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J. Cell. Physiol. 208, 77-86. https://doi.org/10.1002/jcp.20656
  67. Firestein, G. S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361. https://doi.org/10.1038/nature01661
  68. Sen, M., Lauterbach, K., El-Gabalawy, H., Firestein, G. S., Corr, M. and Carson, D. A. (2000) Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A. 97, 2791-2796. https://doi.org/10.1073/pnas.050574297
  69. Sen, M., Chamorro, M., Reifert, J., Corr, M. and Carson, D. A. (2001) Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 44, 772-781. https://doi.org/10.1002/1529-0131(200104)44:4<772::AID-ANR133>3.0.CO;2-L
  70. Sen, M., Reifert, J., Lauterbach, K., Wolf, V., Rubin, J. S., Corr, M. and Carson, D. A. (2002) Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. 46, 2867-2877. https://doi.org/10.1002/art.10593
  71. Nakamura, Y., Nawata, M. and Wakitani, S. (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am. J. Pathol. 167, 97-105. https://doi.org/10.1016/S0002-9440(10)62957-4
  72. Imai, K., Morikawa, M., D'Armiento, J., Matsumoto, H., Komiya, K. and Okada, Y. (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem. Biophys. Res. Commun. 345, 1615-1620. https://doi.org/10.1016/j.bbrc.2006.05.075
  73. James, I. E., Kumar, S., Barnes, M. R., Gress, C. J., Hand, A. T., Dodds, R. A., Connor, J. R., Bradley, B. R., Campbell, D. A., Grabill, S. E., Williams, K., Blake, S. M., Gowen, M. and Lark, M. W. (2000) FrzB-2: a human secreted frizzled- related protein with a potential role in chondrocyte apoptosis. Osteoarthritis Cartilage 8, 452-463. https://doi.org/10.1053/joca.1999.0321
  74. Loughlin, J., Dowling, B., Chapman, K., Marcelline, L., Mustafa, Z., Southam, L., Ferreira, A., Ciesielski, C., Carson, D. A. and Corr, M. (2004) Functional variants within the secreted frizzled-related protein 3 gene are as sociated with hip osteoarthritis in females. Proc. Natl. Acad. Sci. U. S. A. 101, 9757-9762. https://doi.org/10.1073/pnas.0403456101
  75. Kim, S. J., Im, D. S., Kim, S. H., Ryu, J. H., Hwang, S. G., Seong, J. K., Chun, C. H. and Chun, J. S. (2002) Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem. Biophys. Res. Commun. 296, 221- 226. https://doi.org/10.1016/S0006-291X(02)00824-0
  76. Dell'accio, F., De Bari, C., Eltawil, N. M., Vanhummelen, P. and Pitzalis, C. (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 58, 1410-1421. https://doi.org/10.1002/art.23444
  77. Xu, W. and Kimelman, D. (2007) Mechanistic insights from structural studies of beta-catenin and its binding partners. J. Cell. Sci. 120, 3337-3344. https://doi.org/10.1242/jcs.013771
  78. Hwang, S. G., Yu, S. S., Ryu, J. H., Jeon, H. B., Yoo, Y. J., Eom, S. H. and Chun, J. S. (2005) Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alpha-catenin. J. Biol. Chem. 280, 12758-12765. https://doi.org/10.1074/jbc.M413367200
  79. Ryu, J. H. and Chun, J. S. (2006) Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J. Biol. Chem. 281, 22039-22047. https://doi.org/10.1074/jbc.M601804200
  80. Huh, Y. H., Ryu, J. H. and Chun, J. S. (2007) Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J. Biol. Chem. 282, 17123-17131. https://doi.org/10.1074/jbc.M700599200

Cited by

  1. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0168059
  2. An update on primary hip osteoarthritis including altered Wnt and TGF-  associated gene expression from the bony component of the disease vol.50, pp.12, 2011, https://doi.org/10.1093/rheumatology/ker291
  3. Temporal Activation of β-Catenin Signaling in the Chondrogenic Process of Mesenchymal Stem Cells Affects the Phenotype of the Cartilage Generated vol.21, pp.11, 2012, https://doi.org/10.1089/scd.2011.0376
  4. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii) vol.193, 2013, https://doi.org/10.1016/j.ygcen.2013.06.021
  5. Stimulation of superficial zone protein accumulation by hedgehog and Wnt signaling in surface zone bovine articular chondrocytes vol.65, pp.2, 2013, https://doi.org/10.1002/art.37768
  6. Identification of Genes Regulated by IL-1β Using Integrative microRNA and mRNA Genomic Analysis in Human Articular Chondrocytes vol.18, pp.4, 2011, https://doi.org/10.4078/jrd.2011.18.4.264
  7. Signaling Pathways in Cartilage Repair vol.15, pp.5, 2014, https://doi.org/10.3390/ijms15058667
  8. β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation vol.42, pp.6, 2009, https://doi.org/10.5483/BMBRep.2009.42.6.338
  9. Altered Signaling in the G1 Phase Deregulates Chondrocyte Growth in a Mouse Model With Proteoglycan Undersulfation vol.115, pp.10, 2014, https://doi.org/10.1002/jcb.24844
  10. Wnt Inhibitory Factor 1 Deficiency Uncouples Cartilage and Bone Destruction in Tumor Necrosis Factor α-Mediated Experimental Arthritis vol.65, pp.9, 2013, https://doi.org/10.1002/art.38054
  11. TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells vol.9, pp.1, 2015, https://doi.org/10.1186/1754-1611-9-1
  12. A genome-wide transcriptomic analysis of articular cartilage during normal maturation in pigs vol.627, 2017, https://doi.org/10.1016/j.gene.2017.07.001
  13. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering vol.2, pp.4, 2015, https://doi.org/10.1016/j.gendis.2015.09.003
  14. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis vol.1240, pp.1, 2011, https://doi.org/10.1111/j.1749-6632.2011.06258.x
  15. Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament and meniscus injury vol.21, pp.10, 2013, https://doi.org/10.1016/j.joca.2013.05.019
  16. Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via DKK1- mediated canonical Wnt/β-catenin signaling vol.99, 2017, https://doi.org/10.1016/j.ijbiomac.2017.02.087
  17. The early secretory pathway in development: A tale of proteins and mRNAs vol.20, pp.7, 2009, https://doi.org/10.1016/j.semcdb.2009.03.012
  18. The retinal pigment epithelium of the eye regulates the development of scleral cartilage vol.347, pp.1, 2010, https://doi.org/10.1016/j.ydbio.2010.08.006
  19. Increased sulfatase 1 gene expression in degenerative intervertebral disc cells vol.33, pp.3, 2015, https://doi.org/10.1002/jor.22766
  20. Articular Cartilage Development: A Molecular Perspective vol.43, pp.2, 2012, https://doi.org/10.1016/j.ocl.2012.01.003
  21. Attenuation of Chondrogenic Transformation in Vascular Smooth Muscle by Dietary Quercetin in the MGP-Deficient Mouse Model vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0076210
  22. RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0038833
  23. New findings in osteoarthritis pathogenesis: therapeutic implications vol.4, pp.1, 2013, https://doi.org/10.1177/2040622312462734
  24. Molecular basis of the clinical features of Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome (AARRS) and Fuhrmann syndrome vol.161, pp.9, 2013, https://doi.org/10.1002/ajmg.a.35437
  25. Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p vol.33, pp.11, 2015, https://doi.org/10.1002/stem.2093
  26. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia vol.243, pp.7, 2014, https://doi.org/10.1002/dvdy.24131
  27. Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Epiphyseal Cartilage Development through β-Catenin-dependent and -independent Pathways vol.288, pp.45, 2013, https://doi.org/10.1074/jbc.M113.463554
  28. The Chondrogenic Potential of Mesenchymal Cells and Chondrocytes from Osteoarthritic Subjects vol.2, pp.1, 2011, https://doi.org/10.1177/1947603510380899
  29. Analysis of the Chondrogenic Potential and Secretome of Mesenchymal Stem Cells Derived from Human Umbilical Cord Stroma vol.20, pp.7, 2011, https://doi.org/10.1089/scd.2010.0315
  30. Evolution of the parathyroid hormone family and skeletal formation pathways vol.170, pp.1, 2011, https://doi.org/10.1016/j.ygcen.2010.10.023
  31. Wnt5a plays a crucial role in determining tooth size during murine tooth development vol.345, pp.3, 2011, https://doi.org/10.1007/s00441-011-1224-4
  32. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease 2010, https://doi.org/10.1002/dvdy.22046
  33. Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells vol.91, pp.12, 2011, https://doi.org/10.1038/labinvest.2011.144
  34. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs vol.30, pp.10, 2009, https://doi.org/10.1038/aps.2009.143
  35. Wnt/β-Catenin and Retinoic Acid Receptor Signaling Pathways Interact to Regulate Chondrocyte Function and Matrix Turnover vol.285, pp.1, 2010, https://doi.org/10.1074/jbc.M109.053926
  36. Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage vol.6, pp.3, 2011, https://doi.org/10.1038/nprot.2010.179
  37. A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome vol.152A, pp.11, 2010, https://doi.org/10.1002/ajmg.a.33673
  38. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification vol.473, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.03.089
  39. The Wnt Serpentine Receptor Frizzled-9 Regulates New Bone Formation in Fracture Healing vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0084232
  40. Amelogenin splice isoforms stimulate chondrogenic differentiation of ATDC5 cells vol.19, pp.2, 2013, https://doi.org/10.1111/j.1601-0825.2012.01967.x
  41. The Emerging Role of Wnt/PCP Signaling in Organ Formation vol.6, pp.1, 2009, https://doi.org/10.1089/zeb.2008.0563
  42. Patients with sclerosteosis and disease carriers: Human models of the effect of sclerostin on bone turnover vol.26, pp.12, 2011, https://doi.org/10.1002/jbmr.474
  43. Molecular hydrogen suppresses activated Wnt/β-catenin signaling vol.6, pp.1, 2016, https://doi.org/10.1038/srep31986
  44. Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway vol.19, pp.11, 2011, https://doi.org/10.1016/j.joca.2011.07.014
  45. Sox9 Potentiates BMP2-Induced Chondrogenic Differentiation and Inhibits BMP2-Induced Osteogenic Differentiation vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0089025
  46. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation vol.451, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.07.125
  47. miR-449a Regulates the Chondrogenesis of Human Mesenchymal Stem Cells Through Direct Targeting of Lymphoid Enhancer-Binding Factor-1 vol.21, pp.18, 2012, https://doi.org/10.1089/scd.2011.0732
  48. Immunohistochemical expression of WNT5A and MMPs in odontogenic epithelial tumors and cysts vol.117, pp.8, 2015, https://doi.org/10.1016/j.acthis.2015.10.006
  49. Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8 vol.26, pp.5, 2014, https://doi.org/10.1016/j.cellsig.2014.01.021
  50. Mice vol.39, pp.3, 2012, https://doi.org/10.3899/jrheum.110971
  51. BIO allieviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/β-catenin signaling activation pp.07360266, 2017, https://doi.org/10.1002/jor.23748
  52. Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior vol.6, pp.45, 2018, https://doi.org/10.1039/C8TB02314J
  53. The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/7402947
  54. Gene–gene interactions of the Wnt/β-catenin signaling pathway in knee osteoarthritis vol.45, pp.5, 2018, https://doi.org/10.1007/s11033-018-4260-2
  55. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-1004-0
  56. Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5120
  57. Sox11-modified mesenchymal stem cells accelerate cartilage defect repair in SD rats pp.1432-0878, 2019, https://doi.org/10.1007/s00441-018-02979-4