Improvement of Analytical Probabilistic Model for Urban Storm Water Simulation using 3-parameter Mixed Exponential Probability Density Function

3변수 혼합 지수 확률밀도함수를 이용한 도시지역 강우유출수의 해석적 확률모형 개선

  • Choi, Daegyu (Department of Environmental System Engineering, Pukyong National University) ;
  • Jo, Deok Jun (Division of Architecture & Civil Engineering, Dongseo University) ;
  • Han, Suhee (Department of Environmental System Engineering, Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental System Engineering, Pukyong National University)
  • 최대규 (부경대학교 환경시스템공학부) ;
  • 조덕준 (동서대학교 건축토목공학부) ;
  • 한수희 (부경대학교 환경시스템공학부) ;
  • 김상단 (부경대학교 환경시스템공학부)
  • Received : 2008.03.12
  • Accepted : 2008.03.15
  • Published : 2008.05.30

Abstract

In order to design storage-based non-point source management facilities, the aspect of statistical features of the entire precipitation time series should be considered since non-point source pollutions are delivered by continuous rainfall runoffs. The 3-parameter mixed exponential probability density function instead of traditional single-parameter exponential probability density function is applied to represent the probabilistic features of long-term precipitation time series and model urban stormwater runoff. Finally, probability density functions of water quality control basin overflow are derived under two extreme intial conditions. The 31-year continuous precipitation time series recorded in Busan are analyzed to show that the 3-parameter mixed exponential probability density function gives better resolution.

Keywords

Acknowledgement

Grant : GIS 기반의 비점오염물질 발생량 예측 모델개발

Supported by : 환경부

References

  1. 김상단, 조덕준(2007). 비점오염원 관리를 위한 유출포착곡 선. 한국물환경학회지, 23(6), pp. 829-836
  2. 조덕준(2007). 위험도 기반 지역별 정규 CSOs 곡선 설계에 관한 연구. 한국수자원학회논문집, 39, pp. 575-581 https://doi.org/10.3741/JKWRA.2006.39.7.575
  3. 조덕준, 김건하(2006). 소규모 도시유역 합류식 하수관거 월 류수 특성화 및 최적 저류지 용량결정. 한국물환경학회지, 22(2), pp. 314-320
  4. 조덕준, 김명수, 이정호, 김중훈(2006). 연속 강우-유출 모의 기법을 이용한 최적 CSOs 산정에 관한 연구. 한국물환경학회지, 22(6), pp. 1068-1074
  5. 조덕준, 이정호, 김명수, 김중훈, 박무종(2007). 도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정. 한국물환경학회지, 23(6), pp. 490-497
  6. Adams, B. J. and Papa, F. (2000). Urban stormwater management planning with analytical probabilistic models, John Wiley & Sons, INC
  7. Behera, P. K., Papa, F. and Adams, B. J. (1997). Optimization of regional storm water management system. Journal of Water Resources Planning and Management, 125, pp. 107-144 https://doi.org/10.1061/(ASCE)0733-9496(1999)125:2(107)
  8. Foufoula-Georgiou, E. and Lettenmaier, D. P. (1987). A Markov renewal model for rainfall occurrences. Water Resources Research, 23, pp. 875-884 https://doi.org/10.1029/WR023i005p00875
  9. Georgakakos, K. P. and Kavvas, M. L. (1987). Precipitation analysis, modeling, and predicition in hydrology. Reviews of Geophysics, 25, pp. 163-178 https://doi.org/10.1029/RG025i002p00163
  10. Guo, Y. and Adams, B. J. (1999a). Analysis detention ponds for stormwater quality control. Water Resources Research, 35, pp. 2447-2456 https://doi.org/10.1029/1999WR900124
  11. Guo, Y. and Adams, B. J. (1999b). An analytical probabilistic approach to sizing flood control detention facilities. Water Resources Research, 35, pp. 2457-2468 https://doi.org/10.1029/1999WR900125
  12. Guo, Y. and Urbonas, R. B. (1996). Maximized detention volume determined by runoff capture ratio. Journal of Water Resources Planning and Management, 122, pp. 33-39 https://doi.org/10.1061/(ASCE)0733-9496(1996)122:1(33)
  13. Hanson, C. L., Cumming, K. A., Woolhiser, D. A. and Richardson, C. W. (1994). Microcomputer program for daily weather simulations in the contiguous United States. USDA/ARA, ARS-114, pp. 38
  14. Loganathan, G. V. and Delleur, J. W. (1984). Effects of urbanization on overflows and pollution loadings from storm sewer overflows: a derived distribution approach. Water Resources Research, 20, pp. 857-865 https://doi.org/10.1029/WR020i007p00857
  15. Loganathan, G. V., Delleur, J. W. and Segarra, R. I. (1985). Planning detension storage for stormwater management. Journal of Resources Planning and Management, 111, pp. 382-398 https://doi.org/10.1061/(ASCE)0733-9496(1985)111:4(382)
  16. Milks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210, pp. 178-191 https://doi.org/10.1016/S0022-1694(98)00186-3
  17. Rodriguez-Iturbe, I., Gupta, V. K. and Waymire, E. (1984). Scale consideration in the modeling of temporal rainfall. Water Resources Research, 20, pp. 1611-1619 https://doi.org/10.1029/WR020i011p01611
  18. Smith, R. E. and Schreiber, H. A. (1974). Point processes of seasonal thunderstorm rainfall. Part 2: rainfall depth probabilities. Water Resources Researech, 10, pp. 418-423 https://doi.org/10.1029/WR010i003p00418
  19. U.S. Army Corps of Engineers (1974). Storage, treatment, overflow, runoff model; STORM, NO. 723-S8-L2520, Hydrologic Engineering Center, Davis, CA
  20. U.S. EPA (1986). Methodological for analysis of detention basins for control urban runoff quality