Adaptive Power allocation inenergy-constrained wireless ad-hoc networks
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ABSTRACT

We proposed a simple power allocation scheme to maximize network lifetime for “amplify and forward (AF)” and "decode and forward
(DF)". To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total
transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at
destination node. In this paper, we calculate power allocation in model of AF and DF. We evaluated the proposed power allocation scheme
using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal
power allocation.
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I. Introduction detrimental effects of multi-path fading. Transmit diversity

generally requires more than one antenna at the transmitter.

A wireless channel suffers from time-varying fading However, many wireless devices are limited by size or
caused by multi-path propagation and destructive hardware complexity to one antenna. A new class of
superposition of signals arriving via different paths. methods called cooperative communication or cooperative

Diversity techniques are a widely applied to reduce diversityhas been proposed that enables signal antenna and
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generate a virtual multiple-antenna transmitter that allows
them to achieve transmit diversity [1]. Relay transmission
can be viewed as a good example of cooperative
communication. In a cooperative relay network, each node
acts both as information sources as well as relays. The
source sends information to the relays. The relays amplify or
detect the received signals and then forward them to the
destination. At the destination, by propetly combining the
received signals from the source and relays, a distributed
diversity can be achieved. There are some possible methods,
like amplify and forward, decode and forward, coded
cooperation, selection relaying, incremental relaying [2],
[3], and [4].

In the cooperative relay network, relay selection and
power allocation are the important issues to determine the
system performance. Especially in the power-constrained
network, relay selection and power allocation seriously
affect on the power consumption and the network lifetime.
Lots of ad-hoc networks are modeled as a power-constrained
network and relay node selection and power allocation
algorithm should be designed to maximize the network life.
In {5], power of source and relay are allocated to maximize
the instantaneous received SNR at the destination. In [6],
power-aware relay selection strategy is proposed to
maximize network lifetime, and power of source and relay
are allocated to minimize total transmitted power. However
these papers try to find optimal solutions using complex
computations and didn’t consider the residual power at stage
of power allocation.

In this paper, we proposed a simple power allocation
scheme to maximize network lifetime. The proposed power
allocation exploits the informationof residual power of each
node. To maximize network lifetime, it is important to
allocate power fairly among nodes in a network as well as to
minimize total transmitted power. In the proposed power
allocation, the allocated power is proportional to the residual
power and satisfies the required SNR at destination node.

The rest of the paper is organized as follows. The

cooperative 2-hop relay network model is described in-

section IL. In section III, we propose adaptive power
allocation schemes for the AF and DF relay protocols,

respectively. The results are verified by simulations in

section IV. In section V, we give the conclusions.

II. Cooperative 2-hop relay network

System model in this paper is a general 2-hop relay
network with multiple parallel relay terminals. As shown in
Fig. 1, it consists of one source, several one relay and one
destination.

We consider a quasi-static fading channel, for which the
fading coefficients are constant within one transmission
block, but change independently from one block to another.
We also assume that the fading channels between the source
and destination, between the source and each relay, and

between each relay and the destination are independent.

relay

source
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ooperative transmission

Optimal relaying is about selecting the “best” relay from
all the possible candidates. [6] have applied this idea to the
ad-hoc networks with cooperative diversity, where each user
first select the best relay from a set of M available relays and
then uses this best relay for cooperation. Distributed method
has been proposed in [6] for relay selection in ad-hoc
networks, which is based on local measurements of the
instantaneous channel conditions and requires no knowledge
of the global topology information.

Base on the basic model, we proposed our optimal
relaying model in the purpose of meeting the required
received signal to noise ratio (SNR) at the destination. At the
same time, the residual power of source and relay node is

also in our research area.
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The main idea of our strategies can be divided into two
pares. In sensor network, the optimal power allocation
between the source and each potential relay only meet the
required received signal to noise ration (SNR) at the
destination. At the same time, we consider the residual
power of source and relay nodes.

In this part, we present our protocols simplest. When
transmitting the RTS packet, the source adds some
self-information in it, including its residual power level P,
so that all the potential relays can share this information.
When receiving the RTS packet, not only each potential
relay but also the destination actively measure the local
channel conditions. The destination gets the ICSI of the
source~destination link, ie. h,g, and broadcasts this
measurement in the CTS packet. Having the knowledge of
hyq will help the source decide whether cooperation is
beneficial, and also can help each potential relay I to do the
optimal power allocation when combined with their own
measurements, i.e. h,, and h,_,. After system select a best
relay node that transmitting the signal as a cooperative
transmitting. Relay node and source performs the optimal
power allocation to meet required received signal to noise
ration (SNR) at the destination, at the same time,
considering the residual power of the source and relay node.

The source first broadcasts the information to both the
destination and relays. The received signals at the relay node
and the destination, at time k, are denoted by ¥, (k) and

Y, ,(k), respectively.

Vo (k)= h,s(k)+n, (k) (1)
Y k)=h,s(k)+ n., (k) @

Where h, and h_, are the fading coefficient between
source and relay, and source and destination, respectively.
n, and n_, are zero mean complex Gaussian variable with
variance of %, . Upon receiving signals from the source,
each relay detects and reconstructs the received signals. Let
x,. (k) be the reconstructed signal upon receiving Y, (k)at

relay node. The corresponding received signal at destination
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from relay node can describe by
yrd (k) = hrdxr (k) + nrd (k) (3)

The signals received at the destination, transmitted from
the source and relays, given in equations (2) and (3), are the
combined as follows,

wy, fe—D)+wy, (k)
=w(h k-0 +n fk—0)+w@ x (k)+n, (k)
=W Sk—=0)+n k=D rw (R (h,5(0)+n, ()1 (R)D

Where w,; and w, are the combination coefficients.

M. Adaptive Power Allocation

In this section, we consider two relay model such as
amplify and forward (AF) and decode and forward (DF). For
those relay models, we show a simple power allocation
expression to prolong the whole network life. To extend
network life, transmitted power is determined by residual
power and required SNR at destination.

A: Amplify and forward (AF) model
In this sub-section, we calculate the allocated power for
the AF model in Fig, 2.

source hy destination

S(k)

1% 2. AF &
Fig. 2 AF model

At relay and destination node, the received signals from

the source are
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Vo (k) = h,s(k) +n,, (k) ®)
Via = hys(k)+n,, (k) ©)

The transmitted power at source node is denoted by P,

and the transmitted power at relay node is defined by the
amplified signal power and can be obtained by

2
Po=u*lh P )

r

sr

Where . is an amplification factor. The received signal at
the destination from relay a node is

Yra (k) = by pilhy, stk =)+ n, (k=) +n,, (k) (8)

Substituting (8) into (4) and combining the signals, we
can get

wY,a(k—7)+ Wy, q (k) =
wy (hygs (k—7)+ngy(k— 7))+
wy (. guu(hy,s (k= 1)+, (k— 1)) +n,,(k))

©®

The S/VR at the destination nodedenoted by SNVE ,-and

can be written as

pS

O')%/ (|W1

hsd wl + luhrd h:r wZ ‘2
wh P +1)) (10)

AF

2+lw2|2(

The above S/VR can be maximized by taking partial

derivatives relative to w, and w,, and their optimal values

can be calculated as [7]
VP
w, =
1 o i]
_ lu \/Eh:d h:r
@ lh,| +Do (1)

By substituting (11) into (10), S/VR 4 ;can be expressed

as

2

2 + 1u2 hrdhsr i)_
W[ +1) oy 12

hsd

SNR,, = [

When the received SNR is equal to required SNR, we can
get the minimum transmitted power and so we can get

2
" our
+1 Oy

2
2
LA
2

H hrd

h.,h

rd"“sr
2

hsd

re

SNR,, = (

q
13)

Where SNR,,,is the minimum signal to noise ratio over
which the destination can decode received signal without
serious error. To extend network life, transmitted power
should be proportional to the residual power, and we can get
the simple relationship among the residual power and
transmitted power of source and relay.

P, _P

r

h[ P +o7)
P, P (14)

L4

eV

s

Where F,.and P, are the residual power of source and
relay node, respectively. From (13) and (14), we can get the
transmitted power of source and relay node.

2 _ I)SPIT
P.(h,[ P +o7) (15)
-b++b* —4ac
P =
2a (16)
Where
a= 1)" h:d ’ hrd ’ +Prs h:r 2|hxd : +Prr hrdhxr ’
b =Pr: hsd 20_12\’ _Rr hrd 20-12\ISNReq_Prs‘h:r|20-1%lSNReq
2
c=-P,(o3 ] SNR,, (17)
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B: Decode and forward (DF) model

In this sub-section, we calculate the allocated power for
the DF model in Fig. 2. Let s(k) be the transmitted signal
from the source at time k. The comesponding received
sighals at the relay and destination, at time k, are denoted by
Yy (K)and y,,(K).

Vo (B) = hy, s, (k) +n,, (k) (18)
Vo (k) = hys, (k) +ny, (k) (19)

source
S,k

1% 3 DF 2H
Fig. 3. DF model

In the relay network, generally the distance between relay
and source is shorter than the distance between source and
destination, and so we model the wireless link between
source and destination as an error free channel.

Let 5, (k) be the regenerated signal from the s, (k) and

the received signal at the destination can be written as
Vg = hys, (k) +n, (k) 20)

Similar to the AF, we combine Egs. (19) and (20) as
follows,

Wiy (k) +w,y,, (k) (21)
The optimum weighting coefficients w, and w, can be
calculated as,

ool 22)
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o2 @3)

w, =

Where P, and P, are the power of the source and relay

node, respectively.
The received SNR, denoted by SNR,. , can be

calculated as

2

_ Pllwlhsd ’ +P2|W2hrd

or(w| +w,") 4)

SNR,,,

Transmitted power is controlled to satisfy the required
SNR at destination.

Eiwh
SNRDF= llw] sd

B

or(wl +w|) @5)

Using the same manner with AF model, transmitted
power is set tobe proportional to the residual power

SJE
|
SIE

(26)

From (25) and (26), we can get the transmitted power of
source and relay node.

= PSR (m* +pws[)

P lwhy| + P, wh,[ @n
2 2
_ ])rrSNRreqo-I?I (|w1| +|W2| )
’ Pr: wlhsd ’ + Prr w2hrd : (28)

IV. Simulation Results

Through a simulation, we evaluate the proposed power
allocation policy on a Rayleigh fading channel, and
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compared the performance of proposed power allocation
with that of equal power allocation. We randomly scattered
nodes in a network area in which any nodes can transmit and
receive data using cooperative relay node. At every
transmission, source, relay and destination node are
randomly selected and the transmitted powers of source and
relay are calculated. We assumed that every transmission
takes same time duration. For the performance evaluation,
we defined the network life as the time when the network
has more than one node of which residual power is under
10% of maximum charged power. The network lifetime is

normalized by the time duration of transmission.
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Fig. 4. Normalized network lifetime in AF model
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Fig. 5. Normalized network lifetime in DF model

Fig. 4 and Fig. 5shows the normalized network life time
according to the number of node in AF model and DF
model. As the number of node increase, each node has less
chance to participate in the transmission and increase
network lifetime. Proposed power allocation scheme has
longer network lifetime than the equal power allocation
scheme. Especially, in the larger number of node, proposed

power allocation scheme has much higher network lifetime.
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Fig. 6. The normalized network lifetime according to
different residual power initialization in AF model
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different residual power initialization in DF model
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From Fig. 6, Fig. 7, we can get that normalized network
lifetime value of proposed power allocation according to the
different residual power initialization in AF model and DF
model. We assume that there are two conditions (10 nodes
and 20 nodes) in network, as the number of node increase,
each node increase network lifetime. Proposed power
allocation scheme has longer network lifetime than the equal

power allocation scheme.

V. Conclusion

In this paper, we proposed a simple power
allocationscheme to maximize network lifetime. We show
how to calculate the allocated power to be proportional to
the residual power and satisfy the required SNR at the
destination. Simulation results show that proposed power
allocation obtains much longer network lifetime than the
equal power allocation. Especially, as the number of nodes
in a network increases, proposed power allocation has much
longer network lifetime than the equal power allocation. So
our power allocation methods are effective in optimizing the
system performance, reducing the network power

consumption, and prolong the network lifetime.
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