Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth

대형 다결정 실리콘 잉곳 성장을 위한 ADS 법의 열유동에 관한 공정모사

  • Shur, J.W. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Hwang, J.H. (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Y.J. (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Moon, S.J. (Korea Research Institute of Chemical Technology) ;
  • So, W.W. (Korea Research Institute of Chemical Technology) ;
  • Yoon, D.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • Published : 2008.02.29

Abstract

The development of manufacturing process of silicon (Si) ingots is one of the important issues to the growth of the photovoltaic industry. Polycrystalline Si wafers shares more than 60% of the photovoltaic market due to its cost advantage compared to mono crystalline silicon wafers. Several solidification processes have been developed by industry including casting, heat exchange method (HEM) and electromagnetic casting. In this paper, the advanced directional solidification (ADS) method is used to growth of large sized polycrystalline Si ingot. This method has the advantages of the small heat loss, short cycle time and efficient directional solidification. The numerical simulation of the process is applied using a fluid dynamics model to simulate the temperature distribution. The results of simulations are confirmed efficient directional solidification to the growth of large sized polycrystalline Si ingot above 240 kg.

태양광 산업의 성장에 따른 개선된 실리콘 잉곳 제조 방법의 개발은 중요한 이슈 중 하나이다. 단결정 실리콘 웨이퍼에 비해 가격 변에서의 유리함으로 인해 현재 다결정 실리콘 웨이퍼가 태양광 시장의 60% 이상을 점유하고 있으며 주조법, 열교환법, 전자기 주조법 등을 포함한 몇 가지 응고 공정들이 개발되어 오고 있다. 이 논문에서는 ADS 법을 이용하여 대형 다결정 실리콘을 성장하기 위한 공정모사를 수행하였다. ADS 법은 적은 열 손실, 짧은 공정 시간 및 효율적인 방향성 응고가 가능하다는 장점을 가지고 있다. ADS 공정의 수치해석은 온도 분포를 확인하기 위해 유체역학을 적용하였고, 공정모사 결과 240 kg 이상의 대형 다결정 실리콘 잉곳의 효율적인 방향성 응고가 가능함을 확인하였다.

Keywords

References

  1. C.H. Habler, G. Stollwerck, W. Koch, W. Krumbe, A. Müller, D. Franke and T. Rettelbach, "Multicrystalline silicon for solar cells: process development by numerical simulation", Adv. Mater. 13 (2001) 1815 https://doi.org/10.1002/1521-4095(200112)13:23<1815::AID-ADMA1815>3.0.CO;2-T
  2. L. Liu, S. Nakano and K. Kakimoto, "An analysis of temperature distribution near the melt-crystal interface in silicon czochralski growth with a transverse magnetic field", J. Crystal Growth 282 (2005) 49 https://doi.org/10.1016/j.jcrysgro.2005.05.002
  3. D. Vizman, J. Friedrich and G. Müller, "Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si czochralski melts under the influence of different magnetic fields", J. Crystal Growth 230 (2003) 73
  4. V. Kalaev, D. Lukanin, V. Zabelin, Y. Makarov, J. Virbulis, E. Dornberger and W. Ammon, "Calculation of bulk defects in CZ Si growth: Impact of melt turbulent fluctuations", J. Crystal Growth 250 (2003) 203 https://doi.org/10.1016/S0022-0248(02)02240-6
  5. L. Liu and K. Kakimoto, "Partly three-dimensional global modeling of a silicon czochralski furnace. I. Principles, formulation and implementation of the model", Int. J. Heat and Mass Transfer 48 (2005) 4481 https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.031
  6. D. Franke, T. Rettelbach, C. Habler, W. Koch and A. Müller, "Silicon ingot casting: process development by numerical simulations", Solar Energy Materials & Solar Cells 72 (2002) 83 https://doi.org/10.1016/S0927-0248(01)00153-2
  7. K. Kakimoto, L. Liu and S. Nakano, "Analysis of temperature distributions in a uni-directional-solidification process for multi-crystalline silicon of solar cells by a global model", Material Science and Engineering B 134 (2006) 269 https://doi.org/10.1016/j.mseb.2006.06.040
  8. C. Khattak, F. Schmid, D. Cunningham and J. Summers, "Directional solidification of 80 kg multicrystalline silicon ingots by HEM", Photovoltaic Specialists Conference, 22nd IEEE (1991) 976
  9. F. Ferrazza, "Large size multicrystalline silicon ingots", Solar Energy Materials & Solar Cells 72 (2002) 77 https://doi.org/10.1016/S0927-0248(01)00152-0