DOI QR코드

DOI QR Code

A Bacterial Endophyte, Pseudomonas brassicacearum YC5480, Isolated from the Root of Artemisia sp. Producing Antifungal and Phytotoxic Compounds

  • Chung, Bok-Sil (Division of Applied Life Science (BK 21), PMBBRC & EB-NCRC, Gyeongsang National University) ;
  • Aslam, Zubair (Division of Applied Life Science (BK 21), PMBBRC & EB-NCRC, Gyeongsang National University) ;
  • Kim, Seon-Won (Division of Applied Life Science (BK 21), PMBBRC & EB-NCRC, Gyeongsang National University) ;
  • Kim, Geun-Gon (Department of Research & Development, JGreen Inc.) ;
  • Kang, Hye-Sook (Research Institute of Marine Science & Technology, Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Ahn, Jong-Woong (Research Institute of Marine Science & Technology, Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Chung, Young-Ryun (Division of Applied Life Science (BK 21), PMBBRC & EB-NCRC, Gyeongsang National University)
  • Published : 2008.12.01

Abstract

An endophytic bacterial strain YC5480 producing antifungal and phytotoxic compounds simultaneously was isolated from the surface sterilized root of Artemisia sp. collected at Jinju area, Korea. The bacterial strain was identified as a species of Pseudomonas brassicacearum based on its 16S rRNA gene sequence analysis and physiological and biochemical characteristics. The seed germination and growth of monocot and dicot plants were inhibited by culture filtrate (1/10-strength Tryptic Soy Broth) of the strain. The germination rate of radish seeds in the culture filtrate differed in various culture media. Only 20% of radish seeds germinated in the culture media of 1/2 TSB for 5 days incubation. Mycelial growth of fungal pathogens, Colletotrichum gloeosporioides, Fusarium oxysporum and Phytophthora capsici was also inhibited by the culture filtrate of the strain YC5480. An antifungal compound, KS-1 with slight inhibitory activity of radish seed germination at 1,000 ppm and a seed germination inhibitory compound, KS-2 without suppression of fungal growth were produced simultaneously in TSB. The compounds KS-1 and KS-2 were identified to be 2,4-diacetylphloroglucinol (DAPG) and 2,4,6-trihydroxyacetophenone (THA), respectively.

References

  1. Achouak, W., Sutra, L., Heulin, T., Meyer, J. M., Fromin, N., Degraeve, S., Christen, R. and Gardan, L. 2000. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol. 50:9-18 https://doi.org/10.1099/00207713-50-1-9
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1995. Current protocols in molecular biology, New York: Wiley
  3. Bae, Y. S., Park, K. and Choi, O. H. 2007. Laboratory culture media-dependent biocontrol ability of Burkholderia gladioli strain B543. Plant Pathology J. 23:161-165 https://doi.org/10.5423/PPJ.2007.23.3.161
  4. Benhamou, N., Kloepper, J. W., Quadt-Hallman, A. and Tuzon, S. 1996. Induction of defense-related ultrastructural modification in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929 https://doi.org/10.1104/pp.112.3.919
  5. Chung, Y. R., Sung, K. C., Mo, H. K., Son, D. Y., Nam, J. S., Chun, J. and Bae, K. S. 1999. Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol. 49:753-758 https://doi.org/10.1099/00207713-49-2-753
  6. Compant, D., Duffy, B., Nowak., J., Clement., C., Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959 https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  7. Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H. and Minamisawa, K. 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isoalted from wild rice species. Appl. Environ. Microbiol. 67:5285-5293 https://doi.org/10.1128/AEM.67.11.5285-5293.2001
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791 https://doi.org/10.2307/2408678
  9. Fromin, N., Achouak, W., Thiery, J. M. and Heulin, T. 2001. The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol. Ecol. 37:21-29 https://doi.org/10.1111/j.1574-6941.2001.tb00849.x
  10. Garbeva, P., Overbeek, L. S., Vuurde, J. W. and Elsas, J. D. 2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41:369-383 https://doi.org/10.1007/s002480000096
  11. Goodfellow, M. and O'Donell, A. G. 1994. Chemical methods in prokaryotic systems. John Willey & Sons, New York, N. Y., 575 pp
  12. Gurusiddaiah, S., Gealy, D. R., Kennedy, A. C. and Alex G. OGG., Jr. 1994. Isolation and characterization of metabolites from Pseudomonas fluorescens p-D7 for control of downy brom(Bromus tectorum). Weed Sci. 42:492-501
  13. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41:95-98
  14. Harrison, L. A., Letendre, L., Kovacevich, P., Pierson, E. and Weller, D. 1993. Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol. Biochem. 25:215-221 https://doi.org/10.1016/0038-0717(93)90029-B
  15. Kang, B. R., Song, H. H., Rob, E. Z., Anne, J. A., Matt, S., Kwang, Y. Y., Yong, H. K., Myung, C. L., Baik, H. C. and Young, C. K. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593
  16. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge University Press
  17. Kuklinsky-Sorbal, J., Araujo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A. and Azevedo, J. L. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6:1244-1251 https://doi.org/10.1111/j.1462-2920.2004.00658.x
  18. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  19. Landa, B. B., Mavrodi, D. M., Thomashow, L. S. and Weller, D. M. 2003. Interactions between strains of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982-994 https://doi.org/10.1094/PHYTO.2003.93.8.982
  20. McInroy, J. A. and Kloepper, J. W. 1995. Population dynamics of endophytic bacteria in field-grown sweet cron and cotton. Can. J. Microbiol. 41:895-901 https://doi.org/10.1139/m95-123
  21. Misaghi, I. J. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808-811 https://doi.org/10.1094/Phyto-80-808
  22. Nejad, P. and Johnson, P. A. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oil seed rape and tomat. Biol. Control 18:208-215 https://doi.org/10.1006/bcon.2000.0837
  23. Reddi, T. K., Khudyakov, Y. P. and Borovkov, A. V. 1969. Pseudomonas fluorescens strain 26-0, a producer of phytotoxic substances. Mikrobiologiya 38:909-913
  24. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe. Intract. 19:827-837 https://doi.org/10.1094/MPMI-19-0827
  25. Ross, I. L., Alami, Y., Harvey, P. R., Achouak, W. and Ryder, M. H. 2000. Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 66:1609-1616 https://doi.org/10.1128/AEM.66.4.1609-1616.2000
  26. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Nat. Acad. Sci. USA 100:4927-4935 https://doi.org/10.1073/pnas.0730845100
  27. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
  28. Shanahan, P., O'Sullivan, D. J., Simpson, P., Glennon, J. D. and Ogara, F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58:353-358
  29. Shanahan, P., Glennon, J. D., Crowley, J. J., Donnelly, D. F. and Ogara, F. 1993. Liquid chromatographic assay of microbially derived phloroglucinol antibiotics for establishing the biosynthetic route to production, and factors affecting their regulation. Anal. Chim. Acta 272:271-277 https://doi.org/10.1016/0003-2670(93)80579-A
  30. Sikorski, J., Jahr, H. and Wackernagel, W. 2001. The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ. Microbiol. 3:176-186 https://doi.org/10.1046/j.1462-2920.2001.00174.x
  31. Slininger, P. J., van Cauwenberge, J. E., Bothast, R. J., Weller, D. M., Thomashow, L.S. and Cook, R. J. 1996. Effect of growth culture physiological state, metabolites, and formulation on the viability, phytotoxicity, and efficacy of the take-all biocontrol agent Pseudomonas fluorescens 2-79 stored encapsulated on wheat seeds. Appl. Microbiol. Biotechnol. 45:391-398 https://doi.org/10.1007/s002530050701
  32. Slininger, P. J. and Shea-Andersh, M. A. 2005. Proline-based modulation of 2,4-diacetylphloroglucinol and viable cell yields in cultures of Pseudomonas fluorescens wild-type and overproducing strains. Appl. Microbiol. Biotechnol. 68:630-638 https://doi.org/10.1007/s00253-005-1907-4
  33. Sturz, A. V. and Christie, B. R. 1996. Endophytic bacteria of red clover as agents of allelopathic clover-maize syndromes. Soil Biol. Biochem. 28:583-588 https://doi.org/10.1016/0038-0717(95)00168-9
  34. Suzuki, S., He, Y. and Oyaizu, H. 2003. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr. Microbiol. 47:138-143 https://doi.org/10.1007/s00284-002-3968-2
  35. Thomashow, L. S. and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499-3508 https://doi.org/10.1128/jb.170.8.3499-3508.1988
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882 https://doi.org/10.1093/nar/25.24.4876
  37. van Peer, R., Punte, H. L. M., de Wegger, L. A. and Schippers, B. 1990. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Environ. Microbiol. 56:2462-2470
  38. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250-256 https://doi.org/10.1094/PHYTO-97-2-0250

Cited by

  1. Haloferula luteola sp. nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula vol.61, pp.8, 2011, https://doi.org/10.1099/ijs.0.022772-0
  2. Bioactive alkaloids produced byPseudomonas brassicacearumsubsp.Neoaurantiaca,an endophytic bacterium fromSalvia miltiorrhiza vol.27, pp.4-5, 2013, https://doi.org/10.1080/14786419.2012.701215
  3. Bacillus graminis sp. nov., an endophyte isolated from a coastal dune plant vol.61, pp.7, 2011, https://doi.org/10.1099/ijs.0.023820-0
  4. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. vol.61, pp.1, 2011, https://doi.org/10.1099/ijs.0.019919-0
  5. Amorphus suaedae sp. nov., isolated from the root of a tidal flat plant, Suaeda maritima vol.63, pp.Pt 10, 2013, https://doi.org/10.1099/ijs.0.048959-0
  6. Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.06.2011.0123
  7. Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight vol.144, pp.2, 2016, https://doi.org/10.1007/s10658-015-0767-8
  8. Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant vol.62, pp.Pt 8, 2012, https://doi.org/10.1099/ijs.0.029488-0
  9. Halophytes-associated endophytic and rhizospheric bacteria: diversity, antagonism and metabolite production vol.28, pp.2, 2018, https://doi.org/10.1080/09583157.2018.1434868