Preparation and Characterization of Surface Modified Mica by Microwave-enhanced Wet Etching

마이크로웨이브로 증폭된 습식 에칭에 의한 표면 개질 마이카의 제조와 특성

  • 전상훈 (아모레퍼시픽 기술연구원) ;
  • 권순상 (아모레퍼시픽 기술연구원) ;
  • 김덕희 (아모레퍼시픽 기술연구원) ;
  • 심민경 (아모레퍼시픽 기술연구원) ;
  • 최영진 (아모레퍼시픽 기술연구원) ;
  • 한상훈 (아모레퍼시픽 기술연구원)
  • Published : 2008.12.30

Abstract

In this study we successfully altered the structural characteristics of the mica surface and were able to control oil-absorption by using the microwave enhanced etching (MEE) technique, which has originally been used in semiconductor industry. When microwave energy is applied to the mica, the surface of the mica is etched in a few minutes. As the result of etching, oil-absorption of the mica was enhanced and surface whiteness was improved by modifying the silicon dioxide layer. Additionally, the high whiteness was maintained even though the etched mica absorbed the sebum or sweat. The surface modification of mica was performed by microwave irradiation after the treatment of hydrofluoric acid. The degree of etching was regulated by acid concentration, irradiation time, the amount of energy and slurry concentration. The surface morphology of the etched mica appears to be the shape of the 'Moon'. The characteristics of surface area and roughness were examined by Brunauer-Emmett-Teller (BET) surface area analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM), spectrophotometer and goniophotometer.

본 연구를 통해 반도체 산업에서 유래된 마이크로웨이브 증폭 에칭기술(MEE)을 이용하여, 마이카의 표면 구조를 변화시키고 오일 흡유량을 조절할 수 있었다. 마이크로웨이브 에너지가 마이카에 조사되면, 마이카 표면이 몇 분 이내에 에칭이 된다. 에칭의 결과로 마이카의 오일 흡유량이 증가되고, 마이카 $SiO_2$층의 표면 변화에 의해 백색도가 증가한다. 추가적으로, 땀을 흡수한 이후에도 높은 백색도가 유지된다. 마이카의 표면구조의 변화는 불산에 슬러리화된 마이카에 마이크로웨이브 조사를 통해서 이루어졌다. 에칭의 정도는 산의 농도, 조사 시간, 조사 에너지의 양, 슬러리의 농도에 의해 조절되었다. 에칭된 마이카의 표면 구조는 '달' 표면 모양과 유사하게 보인다. 표면적과 거칠기 등의 특성은 Brunauer-Emmett-Teller (BET), atomic force microscopy (AFM), scanning electron microscopy (SEM), Spectrophotometer, goniophometer로 측정되었다.

Keywords

References

  1. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear tracks in solids, University of California, Berkeley, CA (1975)
  2. S. A. Durrani and R. K. Bull, Solid state nuclear track detection, Pergamon, Oxford (1987)
  3. R. Spohr, Ion tracks and microtechnology: principles and applications, Vieweg, Braunschweig (1990)
  4. S. J. Pearton, F. Ren, and C. R. Abernathy, Enhanced etch rates of tri-level resist stacks in microwave discharges, Semicond. Sci. Technol., 8, 1905 (1993) https://doi.org/10.1088/0268-1242/8/10/020
  5. M. Kang, J. M. Kim, J. W. Kim, Y. K. Kim, H. Chung, and J. E. Yie, Simple and fast microwave-enhanced wet etching of SiC particles for electroless Ni-P platin, Surface and Coating Technology, 161, 79 (2002) https://doi.org/10.1016/S0257-8972(02)00326-2
  6. L. A. Bursill and G. Braunshausen, Heavy-ion irradiation tracks in zircon, Phil. Mag., A62, 395 (1990)
  7. R. Scholz, J. Vetter, and S. Hopfe, Observation of latent heavy-ion tracks in GeS by transmission electron microscopy, Rad. Eff. Def. Solids, 126, 275 (1993) https://doi.org/10.1080/10420159308219725
  8. F. Thibaudau, J. Cousty, E. Balanzat, and S. Bouffard, Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica, Phys. Rev. Lett., 67, 1582 (1991) https://doi.org/10.1103/PhysRevLett.67.1582
  9. S. Bouffard, Y. Pennec, J. Cousty, and F. Thibaudau, Swife heavy ions in matter conferences: SHIM 92, Rad. Eff. Def. Solids, 126, 225 (1993) https://doi.org/10.1080/10420159308219714
  10. J. Ackermann, N. Angert, S. Grafstrom, M. Neitzert, R. Neumann, C. Trautmann, and J. Vetter, Scanning force microscopy of heavy-ion tracks, Radiat. Eff. Def. Solids, 126, 213 (1993) https://doi.org/10.1080/10420159308219711
  11. Standard practice for goniophotometry of objects and materials, ASTM E 167, American Society for Testing and Materials, West Conshohocken, PA (1995)
  12. J. C. P. Broekhoff and J. H. de Boer, Studies on pore systems in catalysts: XIV. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm, J. Catal., 10, 391 (1968) https://doi.org/10.1016/0021-9517(68)90154-1