DOI QR코드

DOI QR Code

Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model

가중평균대리모델을 사용한 천음속 압축기 블레이드 최적화

  • Published : 2008.04.01

Abstract

The main purpose of the present study is to perform shape optimizations of transonic compressor blade in order to enhance its performance. In this study, the Latin hypercube sampling of design of experiments and the weighted average surrogate model with the help of a gradient based optimization algorithm are used within design space by the lower and upper limits of each design variable and for finding optimum designs, respectively. 3-D Reynolds-averaged Navier-Stokes solver is used to evaluate the objective functions of adiabatic efficiency and pressure ratio. Six variables from lean and airfoil thickness profile are selected as design variables. The results show that the adiabatic efficiency is enhanced by 1.43% by efficiency optimization while the pressure ratio is increased very small, and pressure ratio is increased by 0.24% by pressure ratio optimization.

Keywords

References

  1. Rodgers, C. and Sapiro, L., 1971, 'Design Considerations for High-Pressure Ratio Centrifugal Compressor,' ASME Paper 71-GT-91
  2. Beheshti, B. H., Teixeira, J. A., Ivey, P.C., Ghorbanian, K. and Farhanieh, B., 2004, 'Parametric Study of Tip Clearance Casing Treatment on Performance and Stability of a Transonic Axial Compressor,' Journal of Turbomachinery, Vol. 126 https://doi.org/10.1115/1.1791643AdditionalInformation
  3. Jang, C. M. and Kim, K. Y., 2007, 'Applications of Numerical Optimization Techniques to Design of Axial Compressor Blades,' Journal of Aerospace Power, Vol. 22, No. 4, pp. 29-36
  4. Benini, E., 2004, 'Three-Dimensional Multi- Objective Design Optimization of a Transonic Compressor Rotor,' Journal of Propulsion and Power, Vol. 20, No. 3
  5. Seo, S. J., Choi, S. M. and Kim, K. Y., 2006, 'Design of An Axial Flow Fan with Shape Optimization,' Trans. of the KSME, Series B, Vol. 30, No. 7, pp. 603-611 https://doi.org/10.3795/KSME-B.2006.30.7.603
  6. Krain, H., Karpinski, G. and Beversdorff, M., 2001, 'Flow Analysis in a Transonic Centrifugal Compressor Rotor Using 3-Component Laser Velocimetry,' ASME Paper No. 2001-GT-0315
  7. Kerrebrock, J. L, 1981, 'Flow in Transonic Compressors,' AIAA Journal, Vol. 19, No. 1, pp. 4-19 https://doi.org/10.2514/3.50919
  8. Dunker, R. J., Strinning, D. E. and Weyer, H. B., 1977, 'Experimental Study of the Flow Field Within a Transonic Axial Compressor Rotor by Laser Velocimetry and Comparison with Through-Flow Calculations,' ASME Paper 77-GT-28
  9. Dunham, J., 1998, 'CFD Validation for Propulsion System Components,' AGARD Advisory Report 355, ISBN 92-836-1075-X
  10. Reid, L. and Moore, R. D., 1978, 'Design and Overall Performance of Four Highly-Loaded, High Speed Inlet Stages for an Advanced, High- Pressure -Ratio Core Compressor,' NASA TP- 1337
  11. Samad, A., Kim, K. Y., Goel, T., Haftka, R, T. and Shyy, W., 2007, Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization, Journal of Propulsion and Power (Accepted for Publication)
  12. Yang, L., Ouyang, H. and Hui, D. Z., 2007, 'Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades,' International Journal of Rotary Machinery, Vol. 2007, Article ID 85275, 10 Pages, Doi: 10.11 55/2007/85275 https://doi.org/10.1155/2007/85275
  13. Pierret, S., Coelho, R. F. and Kato, H., 2007, 'Multidisciplinary and Multiple Operating Points Shape Optimization of Three-dimensional Compressor Blades,' Structural and Multidisciplinary Optimization, Vol. 33, No. 1 https://doi.org/10.1007/s00158-006-0033-y
  14. Oyama, A., Liou, M. S. and Obayashi, S., 2004, 'Transonic Axial-Flow Blade Optimization: Evolu tionary Algorithms/ Three-Dimensional Navier- Stoke Solver,' Journal of Propulsion and Power, Vol. 20, No. 4, pp. 612-619 https://doi.org/10.2514/1.2290
  15. Chen, N., Zhang, H., Xu, Y. and Huang, W., 2007, 'Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor,' Journal of Thermal Science, Vol. 16, No. 2 https://doi.org/10.1007/s11630-007-0105-3
  16. Chen, N. X., Zhang, H. W., Du, H., Xu, Y. J. and Huang, W. G., 2005, 'Effect of Maximum Camber Location on Aerodynamic Performance of Transonic Compressor Blades,' ASME Turbo Expo 2005, Nevada, USA, GT2005-68541
  17. Jang, C. M., Li, P. and Kim, K. Y., 2006, 'Optimization of Blade Sweep of NASA Rotor 37,' Trans. of the KSME, Series B, Vol. 30, No. 7, pp. 622-629 https://doi.org/10.3795/KSME-B.2006.30.7.622
  18. JMP$\circledR$ 5.1, 2004, SAS Institute, Inc.
  19. Samad, A., Shin, D. Y., Kim, K. Y., Goel, T. and Haftka R, T., 2007, 'Surrogate Modeling for Optimization of a Dimpled Channel to Enhance Heat Transfer Performance,' Journal of Thermophysics and Heat Transfer, Vol. 21, Number 3, pp. 667-670 https://doi.org/10.2514/1.30211
  20. Myers, R. H. and Montgomery, D. C., 1995, Response Surface Methodology-Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Inc., New York
  21. Orr, M. J. L., 1996, Introduction to Radial Basis Neural Networks, Center for Cognitive Science, Edinburgh University, Scotland, UK. http://anc. ed.ac.uk/ RBNN/
  22. Martin, J. D. and Simpson, T. W., 2005, 'Use of Kriging Models to Approximate Deterministic Computer Models,' AIAA Journal, Vol. 43, No. 4, pp. 853-863 https://doi.org/10.2514/1.8650
  23. Goel, T., Haftka, R., Shyy, W. and Queipo, N., 2007, 'Ensemble of Surrogates,' Structural and Multidisciplinary Optimization, Vol. 33. No. 3, pp. 199-216 https://doi.org/10.1007/s00158-006-0051-9
  24. MATLAB$\circledR$, 2004, The Language of Technical Computing, Release 14, The MathWorks Inc
  25. ANSYS CFX-11.0, 2006, ANSYS Inc
  26. Wennerstrom, A. J., 2000, Design of Highly Loaded Axial-Flow Fans and Compressors, Concepts ETI, pp. 61-67
  27. Ji, L., Chen, J. and Lin, F., 2005, 'Review and Understanding on Sweep in Axial Compressor Design,' ASME Turbo Expo 2005, Reno-Tahoe, Neveda, USA, Paper No. GT2005-68473

Cited by

  1. vol.12, pp.1, 2009, https://doi.org/10.5293/KFMA.2009.12.1.065
  2. High-Efficiency Design of a Ventilation Axial-Flow Fan by Using Weighted Average Surrogate Models vol.35, pp.8, 2011, https://doi.org/10.3795/KSME-B.2011.35.8.763