고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici

  • Lee, Jung-Bok ;
  • Shin, Jeong-Hak (School of Bioresource Science, Andong National University) ;
  • Jang, Jong-Ok (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Chung-Sik ;
  • Kim, Kun-Woo (School of Bioresource Science, Andong National University) ;
  • Jo, Min-Sub (School of Bioresource Science, Andong National University) ;
  • Jeon, Chun-Pyo (School of Bioresource Science, Andong National University) ;
  • Kim, Yun-Hoi (School of Bioresource Science, Andong National University) ;
  • Kwon, Gi-Seok (School of Bioresource Science, Andong National University)
  • 발행 : 2008.09.28

초록

고추 역병이 발병된 토양 시료에서 길항미생물을 선발 및 개량하여 다시 현장에 적용했을 때 방제능 및 적응력이 높은 생물 방제균을 선발하고자 총 300여점의 경북 북부지역의 토양시료로부터 길항능이 우수한 균주를 분리하였으며, 이들을 대상으로 고추 역병균에 대한 항진균력이 가장 우수한 균주 AM-651을 최종 선발하였다. 분리균주 AM-651은 생리생화학적 특성과 16S rDNA sequencing의 방법을 이용하여 동정한 결과 Bacillus sp.로 동정되었다. 항진균성 활성물질의 생산을 위한 배지의 최적조건은 Davis minimal media를 변형하여 배양하였을 경우 pH 7, 온도 $30^{\circ}C$ 조건에서 고추 역병균에 대한 항진균 활성이 높았으며, 탄소원으로는 0.5% glucose, 질소원으로는 0.1% $(NH_4)_2SO_4$, 무기염으로는 0.7% $K_2HPO_4$를 첨가하였을 때 가장 높은 활성을 보였다 선발된 Bacillus sp. AM-651 균주를 시간대별로 배양 후 항진균력을 측정 해 본 결과 48시간 배양액에서 고추 역병균에 대한 억제율이 가장 높았다. 또한, Bacillus sp. AM-651의 배양액은 pH와 온도의 변화에서 안정된 활성을 보였다. Bacillus sp. AM-651은 고추 역병 외에도 B. sorokiniana, B. cinerea, R. solani 등에 대하여 항진균 활성이 높았고, 다른 식물성 병원균에 대해서도 비교적 항진균 활성이 높게 나타났다. 열처리한 Bacillus sp. AM-651 배양상등액은 처리전과 비슷한 항진균 활성을 가지므로 열에 안정한 물질인 것으로 추측되었다.

Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

키워드

참고문헌

  1. Bowers, J. H. and Mitchell, D. J. 1991. Relationship between inoculum level of Phytophthora capsici and mortality of pepper. Phytopathol. 81: 178-184 https://doi.org/10.1094/Phyto-81-178
  2. Chung, B. K. and M. J. Kang. 1990. Effect of temperature and nutrition affecting zoospore formation of Phytophthora capsici causing red pepper fruit rot. Kor. J. Mycol. 18: 203-208
  3. Davidse, L. C., D. Looigen, L. J. Turkensteen, and D. Van der Wal. 1981. Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato field. Neth. J. Pl. Path. 87: 65-68 https://doi.org/10.1007/BF01976658
  4. Gregory, K. F., O. N. Allen, A. J. Riker, and W. H. Peterson. 1952. Antibiotics as agents for the control of certain damping-off fungi. Am. J. Botany. 9: 405-415
  5. Hwang, B. K. and B. S. Kim. 1995. In-vivo efficacy and invitro activity of tubercidine, and antibiotic nucleoside, for control of Phytophthora capsici blight in Capsicium annuum. Pestic. Sci. 44: 225-260 https://doi.org/10.1002/ps.2780440304
  6. Kim, K. D., S. Nemec, and G. Musson. 1997. Control of phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Apple. Soil Ecol. 5: 169-179 https://doi.org/10.1016/S0929-1393(96)00138-2
  7. Kim, S. D. and H. S. Lim. 1990. The role of chitinase of Pseudomonas stutzeri YPL-1 in biocontrol of Fusarium solani. Kor. J. Microbiol. Biotechnol. 18: 88-94
  8. Kim, S. H., H. J. Suh, and C. O. Kim. 1993. Taxonomy, purification and physicochemical properties of novel antifungal antibiotic AF-011A. Kor. J. Appl. Microbiol. Biotechnol. 6: 556-536
  9. Kim, Y. S. and S. D. Kim. 1994. Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biocontrol agent. J. Microbiol. Biotechnol. 4: 296-304
  10. Kim, Y. S. 1992. Biocontrol bacteria, Bacillus subtilis YB-70 producing the antifungal antibiotics and genetic improvement. Department of applied microbiology, Graduate school Yeungnam University
  11. Lamour, K. H. and M. K. Hausbeck. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathol. 90: 369-400
  12. Lee, E. T. and S. D. Kim. 2001. An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29: 37-42
  13. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growth promoting Pseudomonas fluorescens GL20 - mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biochnol. 12: 240-249
  14. Lim, T. H., T. H. Chang, and B. J. Cha. 1998. Incidence of benzimidazole- and dicarboximide-resistant isolates of Monilinia fructicola from over-wintering memmies and peduncles on peach trees. Kor. J. Plant Pathol. 14: 367-370
  15. Lim, J. N. 2000. Phytophthora Diseases in korea. Plant Pathology Div. National Institute of Agricultultural Sicence and Technology, Rural Development Administration, Suwon 441-707. Korea
  16. Oh, J. S. and C. H. Kim. 1992. Varying sensitivity to metalaxyl of Korean isolates of Phytophthora capsici from red pepper field. Kor. J. Plant Pathol. 8: 29-33
  17. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluores cent siderphore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935 https://doi.org/10.1094/Phyto-81-930
  18. Ristaino, J. B. 1990. Intraspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North in North Carolina. Phytopathol. 80: 1253-1259 https://doi.org/10.1094/Phyto-80-1253
  19. Shin, Y. J. 2000. Isolation, characteristics and structural analysis of the antifungal antibiotic from Bacillus sp. YJ-63. Department of applied microbiology, Graduate school Dongeui University
  20. Someya, N. and N. Kataoka. 2000. Biological control of cyclamen soilborne disease by Serratia marcescens strain B2. Plant disease. 4: 294-299
  21. Yoo, S. J. and H. G. Kim. 2002. Distribution and alteration of mating type of Phytophthora capsici population from red pepper in Korea. Kor. J. Mycol. 30: 152-156 https://doi.org/10.4489/KJM.2002.30.2.152
  22. Yoo, J. H., B. H. Song, J. G. Kim, M. H. Lee, and S. D. Kim. 1995. Genetic organization and nucleotide sequencing of the urea gene cluster in Bacillus pasteurii. Mol. cell. 5: 359-369