DOI QR코드

DOI QR Code

Fabrication of Three-Dimensional Network Structures by an Electrochemical Method

전기화학적 방법을 통한 3차원 금속 다공성 막의 제조

  • Kang, Dae-Keun (School of Materials Science and Engineering, Pusan National University) ;
  • Heo, Jung-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Published : 2008.03.25

Abstract

The morphology of three-dimensional (3D) cross-linked electrodeposits of copper and tin was investigated as a function of the content of metal sulfate and acetic acid in a deposition bath. The composition of copper sulfate had little effect on the overall copper network structure, whereas that of tin sulfate produced significant differences in the tin network structure. The effect of the metal sulfate content on the copper and tin network is discussed in terms of whether or not hydrogen evolution occurs on electrodeposits. In addition, the hydrophobic additive, i.e., acetic acid, which suppresses the coalescence of evolved hydrogen bubbles and thereby makes the pore size controllable, proved to be detrimental to the formation of a well-defined network structure. This led to a non-uniform or discontinuous copper network. This implies that acetic acid critically retards the electrodeposition of copper.

Keywords

References

  1. J. W. Long, C. P. Rhodes, A. L. Young and D.R. Rolison, Nano Letters, 3, 1155 (2003) https://doi.org/10.1021/nl0343598
  2. J. S. Sakamoto and B. Dunn, J. Mater. Chem., 12, 2859 (2002) https://doi.org/10.1039/b205634h
  3. S. Ranganathan, R. McCreery, S. M. Majji and M. Madou, J. Electrochem. Soc., 147, 277 (2000) https://doi.org/10.1149/1.1393188
  4. H. C. Shin, J. Dong and M. Liu, Adv. Mater., 15(19), 1610 (2003) https://doi.org/10.1002/adma.200305160
  5. H. C. Shin and M. Liu, Adv. Funct. Mater., 15(4), 582 (2005) https://doi.org/10.1002/adfm.200305165
  6. H. C. Shin and M. Liu, Chem. Mater., 16(25), 5460 (2004) https://doi.org/10.1021/cm048887b
  7. M.G. Fontana, Corrosion Engineering, 3rd ed., p.445, McGraw-Hill, New York, USA (1987)
  8. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., p.75, Prentice Hall, New Jersey, USA (1996)
  9. V. S. J. Craig, B. W. Ninham and R.M. Pashley, J. Phys. Chem., 97, 10197 (1993) https://doi.org/10.1021/j100141a047
  10. V. S. J. Craig, B. W. Ninham and R. M. Pashley, Nature, 364, 317 (1993) https://doi.org/10.1038/364317a0
  11. L. A. Deschenes, J. Barrett, L. J. Muller, U. Mohanty and J. T. Fourkas, J. Phys. Chem., B101, 5777 (1997) https://doi.org/10.1021/jp970849a
  12. L. A. Deschenes, J. Barrett, L. J. Muller, J. T. Fourkas and U. Mohanty, J. Phys. Chem., B102, 5115 (1998) https://doi.org/10.1021/jp980828w
  13. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, 2nd ed., p.209, Wiley-Interscience, New Jersey, USA (2006)
  14. J.H. White and H.D. Abruna, J. Electroanal. Chem., 300, 521 (1991) https://doi.org/10.1016/0022-0728(91)85414-K
  15. E. Herrero and H.D. Abruna, Langmuir, 13, 4446 (1997) https://doi.org/10.1021/la970109t
  16. T. Fukuda and A. Aramata, J. Electroanal. Chem., 467, 112 (1999) https://doi.org/10.1016/S0022-0728(99)00166-7