DOI QR코드

DOI QR Code

Hypoglycemic Effect of Fermented Soybean Culture Mixed with Mulberry Leaves on Neonatal Streptozotocin-Induced Diabetic Rats

뽕잎 함유 대두발효물이 신생 당뇨유도쥐에 미치는 혈당강하효과

  • Published : 2008.04.30

Abstract

The effect of fermented soybean culture of Bacillus subtilis MORI mixed with mulberry leaves on the lowering the levels of blood glucose and cholesterol was examined using neonatal streptozotocin-induced diabetic (n-STZ) rats. B. subtilis MORI produces 1-deoxynojirimycin (DNJ), an $\alpha$-glucosidase inhibitor. The content of DNJ of soybean fermented culture mixed with mulberry was higher (4.1$\pm$0.0 mg/g dry base) than that (1.5$\pm$0.0 mg/g) of mulberry. The concentration of 50% inhibition (IC50) against rat intestinal $\alpha$-glucosidase of soybean fermented culture mixed with mulberry was $5.6{\pm}0.1{\mu}g$/mL and that of mulberry was $17.0{\pm}0.5{\mu}g$/mL. Experimental groups of diabetic rats were randomly assigned to normal control group (NC group), diabetic control group (DC group) and three diabetic groups fed with DNJ food product. One of the three diabetic groups was M group (60 mg DNJ food product/kg) (DNJ food product containing 30% mulberry) and the other two were MM-60 group (60 mg/kg) and MM-120 group (120 mg/kg) (DNJ-fortified food product containing 30% fermented soybean culture mixed with mulberry leaves). The glucose in serum was significantly decreased in the MM-60 and MM-120 groups fed with DNJ-fortified food product for 4 weeks, compared with DC group. Total cholesterol and triglyceride in serum were also lower in MM-60 and MM-120 groups than the DC group. These results support that the fermented soybean culture of B. subtilis MORI mixed with mulberry leaves improved the metabolism of blood glucose and lipid in the n-STZ rat model.

당뇨 환자를 위한 기존의 뽕잎 건강식품의 기능을 보완할 목적으로 뽕잎분말과 DNJ 생산균주인 Bacillus subtilis MORI균의 대두발효 혼합물을 신생 당뇨유도쥐에 4주간 경구투여 하여 먹이섭취량, 체중변화, 혈당량, 내당능, 혈중 지질함량, 장기무게 등을 조사하였다. 전체적으로 당뇨유도 시험군은 정상시험군(NC군)과 비교하여 사료섭취량은 많았으나 증체량이 적어 낮은 사료효율을 보였다. 그러나 뽕잎(M군) 및 뽕잎함유대두발효물(MM군)의 투여에 의해 사료효율이 개선되었으며 특히 MM-60군에서 가장 높은 사료효율을 나타내었다. 1주일 간격으로 4주간에 걸쳐 시행한 혈당량 측정 결과 뽕잎이나 뽕잎함유대두발효물의 투여는 공복혈당을 크게 감소시켰으며 특히 MM-60군과 MM-120군은 당뇨대조군(DC군)에 비해 유의적으로 낮게 나타났다. 4주간의 시료투여 후 경구당부하시험에 의한 내당능 조사 결과 뽕잎투여나 뽕잎함유대두발효물의 투여는 혈당량을 꾸준히 감소시켰으며 특히 포도당 투여 후 120분에서의 MM-60군과 MM-120군은 DC군에 비해 유의적으로 낮은 혈당량을 보여 뽕잎 단독보다는 대두발효배양물 첨가에 의해 내당능이 크게 개선된 것으로 나타났다. 혈중 총콜레스테롤 및 중성지질 역시 DC군에서 높은 함량을 나타냈으나 뽕잎이나 뽕잎함유대두발효물 투여에 의해 지질함량이 감소하였으며 그 감량 정도는 총콜레스테롤에서는 MM-60군과 MM-120군에서 그리고 중성지질의 경우에는 M군, MM-60군, MM-120군에서 DC군에 비해 유의적인 감소를 나타내었다. 당뇨 유발에 의해 쥐의 간, 신장, 비장, 심장 등 체내 주요장기의 무게는 크게 증가하였으나 뽕잎 또는 뽕잎함유대두 발효물 투여에 의해 이들 장기의 무게는 대부분 감소하였으며 특히 MM-60군, MM-120군은 DC군에 비해 유의적인 감소를 나타내었다. 이상의 실험결과 뽕잎분말과 DNJ 생산 균주인 B. subtilis MORI균의 대두발효물의 혼합물은 신생 당뇨유도쥐의 제반 당뇨증세 완화에 긍정적으로 작용하는 것이 확인되었으며 따라서 뽕잎함유대두발효물은 앞으로 당뇨환자들에 대한 건강식품 소재로 그 활용이 크게 기대된다 하겠다.

Keywords

References

  1. Kannel WB, Megee DL. 1979. Diabetes and cardiovascular disease. JAHA 241: 2035-2038
  2. Abrams JJ, Ginsberg H, Grundy SM. 1982. Metabolism of cholesterol and plasma triglycerides in non-ketotic diabetes mellitus. Diabetes 31: 903-910 https://doi.org/10.2337/diabetes.31.10.903
  3. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. 1996. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97: 2601-2610 https://doi.org/10.1172/JCI118709
  4. Hayden JM, Reaven PD. 2000. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol 11: 519-528 https://doi.org/10.1097/00041433-200010000-00010
  5. Treadway JL, Mendys P, Hoover DJ. 2001. Glycogen phosphorylase inhibitors for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 10: 439-454 https://doi.org/10.1517/13543784.10.3.439
  6. Fredbwald J, Ruhrah J. 1990. The use of the soybean as a food in diabetes. Am J Med Sci 140: 793-799 https://doi.org/10.1097/00000441-191012000-00002
  7. Potter SM. 1995. Overview of proposed mechanisms for the hypochloesterolemic effect of soy. J Nutr 125: 606S-611S
  8. Kim YT, Kim WK, Oh HI. 1995. Screening and identification of the fibrinolytic bacterial strain from Chungkukjang. Kor J Appl Microbiol Biotechnol 23: 1-5
  9. Kil JO, Kim GN, Park IS. 1998. Production and characterization of fibrinolytic enzyme: Optimal condition for the production of the enzyme produced from Bacillus sp. KP-6408 isolated from Chungkukjang. J Korean Soc Food Sci Nutr 27: 51-56
  10. Kim JI, Kang MJ, Kwon TW. 2003. Antidiabetic effect of soybean and chongkukjang. Korea Soybean Digest 20:44-52
  11. Cui CB, Choi HT, Lee HJ, Moon SY, Kim SH, Lee BG, Lee DS, Ham SS. 2004. Hypoglycemic effect of the functional food manufactured by fermented soybean as main materials in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 33: 1126-1132
  12. Kodama T, Ishida H, Kokubo T, Yamakawa T, Noguchi H. 1990. Glucosylation of quercetin by a cell suspension culture of vitis species. Agric Biol Chem 54: 3238-3288
  13. Shin DH. 1998. Antioxidation substances in mulberry leaf. J Korean Oil Chemists Soc 16: 27-31
  14. Chae JY, Lee JY, Hoang IS, Whangbo D, Choi PW, Lee WC, Kim JW, Kim SY, Choi SW, Rhee SJ. 2003. Analysis of functional components of leaf of different mulberry cultivars. J Korean Soc Food Sci Nutr 32: 15-21 https://doi.org/10.3746/jkfn.2003.32.1.015
  15. Asano N, Oseki K, Tomioka E, Kizu H, Matsui K. 1994. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohyr Res 259: 243-255 https://doi.org/10.1016/0008-6215(94)84060-1
  16. Yoshikumi Y. 1994. Inhibition of intestinal $\alpha$-glycosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric Biol Chem 52: 121-126
  17. Jang MJ, Rhee SJ. 2004. Hypoglycemic effects of pills made of mulberry leaves and silkworm powder in streptozotocin- induced diabetic rats. J Korean Soc Food Sci Nutr 33:1611-1617 https://doi.org/10.3746/jkfn.2004.33.10.1611
  18. Kwon EH, Jung MA, Rhee SJ, Choi SW, Cho SH. 2006. Antioxidant effects of improvement of lipid metabolism of mulberry fruit, mulberry leaves and silkworm powder with different mixing ratios in streptozotocin-induced diabetic rats. Kor J Nutr 39: 91-99
  19. Sung SI, Kim K, Hwang KY, Kim HS, Lee JS. Novel microorganism producing 1-deoxynojirimycin and its composition containing the same. Korean Patent 0477039
  20. Niall MG, Rosaleen AM, Daphne O, Patrick BC, Alan HJ, Gerald HT. 1990. Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes 39: 626-636 https://doi.org/10.2337/diabetes.39.5.626
  21. Kim MH, Kim HY, Kim WK, Kim JY, Kim SH. 2001. Effects of soy oligosaccharides on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. J Korean Nutr 34: 3-13
  22. Arumozhi DK, Veeranjaneyulu A, Bodhanker SL. 2004. Neonatal streptozotocin-induced rat model of type 2 diabetes mellitus. Indian J Pharmacol Educational Forum 36:217-221
  23. Kim JS, Na CS, Eun JB. 2005. Effect of Hovenia dulcis Thumb extract on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 34: 632-637 https://doi.org/10.3746/jkfn.2005.34.5.632
  24. Kim HS, Choe M. 2005. Hypoglycemic effect of Paecilmyces japonica in NIDDM patients. J Korean Soc Food Sci Nutr 34: 821-824 https://doi.org/10.3746/jkfn.2005.34.6.821
  25. Roman-Ropez CR, Allred JB. 1987. Acute alloxan diabetes alters the activity but not the total quantity of acetyl CoA carboxylase in rat liver. J Nutr 117: 1976-1981
  26. Wright BE, Vasselli JR, Katovich MJ. 1998. Positive effects of acarbose in the diabetic rat are not altered by feeding schedule. Phys Behavior 63: 867-874 https://doi.org/10.1016/S0031-9384(98)00013-4
  27. Mertes G. 2001. Safety and efficacy of acarbose in the treatment of type 2 diabetes: data from a 5-year surveillance study. Diabetes Res Clin Prac 52: 193-204 https://doi.org/10.1016/S0168-8227(01)00221-2
  28. Fujita H, Yamagami T. 2001. Fermented soybean-derived Touchi-extract with antidiabetic effect via $\alpha$-glucosidase inhibitory action in a long-term administration study with KKAy mice. Life Sci 70: 219-227 https://doi.org/10.1016/S0024-3205(01)01381-9
  29. Fujita H, Yamagami T, Ohshima K. 2003. Long-term ingestion of Touchi-extract, $\alpha$-glucosidase inhibitor, by borderline and mild type-2 diabetc subjects is safe and significantly reduces blood glucose levels. Nutr Res 23:713-722 https://doi.org/10.1016/S0271-5317(03)00028-9
  30. Levy RI. 1991. Cholesterol, lipoproteins, apolipoproteins and heart disease; present status and future prospects. Clin Chem 27: 653-662
  31. Yang KM, Shin SR, Jang JH. 2006. Effect of combined extract of safflower seed with herbs on blood glucose level and biochemical parameters in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 35: 150-157 https://doi.org/10.3746/jkfn.2006.35.2.150
  32. Costa RL, Summa MA. 2000. Soy protein in the management of hyperlipidemia. Ann Pharmacother 34: 931-935 https://doi.org/10.1345/aph.19371
  33. Hanefeld M. 1995. Acarbose as a first-line drug in non-insulin- dependent diabetes mellitus, in Babl S, Goto Yo, Goto Yu, New aspects of DM treatment. Alpha-glucosidase inhibition(acarbose). Scand J Gastroenterol 30: 892-896 https://doi.org/10.3109/00365529509101597
  34. Dai S, Thomson K, Mcneill JH. 1994. One-year treatment of streptozotocin-induced diabetic rats with vanadyl sulphate. Pharmacol Toxicol 74: 99-107
  35. Grey NJ, Karls I, Kipnis DM. 1975. Physiological mechanism in the development of starvation ketosis in man. Diabetes 24: 10-14 https://doi.org/10.2337/diabetes.24.1.10
  36. Lim SJ, Kim SY, Lee JW. 1995. The effects of Korean wild vegetables on blood glucose levels and liver-muscle metabolism of streptozotocin-induced diabetic rats. Kor J Nutr 28: 585-594
  37. Steer HA, Socher M, McLean P. 1985. Renal hypertrophy in experimental diabetes changes in pentose phosphate pathway activity. Diabetes 34: 485-490 https://doi.org/10.2337/diabetes.34.5.485

Cited by

  1. Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85 vol.49, pp.3, 2011, https://doi.org/10.1007/s12275-011-1238-3
  2. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice vol.21, pp.6, 2012, https://doi.org/10.1007/s10068-012-0222-y
  3. Effects of Puffed and Fermented Red Ginseng on Blood Glucose-related Biomarkers in Streptozotocin-Induced Diabetic Rats vol.41, pp.5, 2012, https://doi.org/10.3746/jkfn.2012.41.5.630
  4. Hypoglycemic effects of submerged culture of Ceriporia lacerata mycelium vol.22, pp.1, 2015, https://doi.org/10.11002/kjfp.2015.22.1.145
  5. Effect of submerged culture of Ceriporia lacerata mycelium on GLUT4 protein in db/db mouse vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.893
  6. Fermented soy bean extract suppresses differentiation of 3T3-L1 preadipocytes and facilitates its glucose utilization vol.15, 2015, https://doi.org/10.1016/j.jff.2015.04.002
  7. Antihyperglycemic of Gleditschiae Spina Extracts in Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats vol.40, pp.2, 2011, https://doi.org/10.3746/jkfn.2011.40.2.321
  8. Preparation of Mulberry Leaves Tea and Its Quality Characteristics vol.53, pp.1, 2010, https://doi.org/10.3839/jabc.2010.010
  9. Anti-hyperlipidemic effect of soybean extract fermented byBacillus subtilisMORI indb/dbmice vol.28, pp.2, 2012, https://doi.org/10.5625/lar.2012.28.2.123
  10. Antioxidant Effects of Extracts from Fermented Red Ginseng Added with Medicinal Herbs in STZ-induced Diabetic Rats vol.44, pp.3, 2012, https://doi.org/10.9721/KJFST.2012.44.3.367
  11. Quality Characteristics of Sauce for Meat prepared with Mulberry Leaf Powder and Mulberry Fruit Powder vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.513
  12. 반응표면분석법을 이용한 최적 비율의 뽕잎과 오디 분말 첨가 기능성 녹두죽의 품질특성 vol.49, pp.6, 2008, https://doi.org/10.9721/kjfst.2017.49.6.699
  13. Quality Characteristics of Inner Beauty Foods (Mook) Prepared with Mixture of Mulberry Leaf and Fruit Powder vol.16, pp.4, 2008, https://doi.org/10.20402/ajbc.2018.0238
  14. 대사증후군 개선을 위한 뽕잎, 오디, 누에 분말의 혼합 비율 최적화 vol.18, pp.2, 2018, https://doi.org/10.15429/jkomor.2018.18.2.83