DOI QR코드

DOI QR Code

Optimizing the Hot-water Extraction Conditions for Acanthopanacis cortex Using Response Surface Methodology

반응표면분석법을 이용한 오가피의 열수 추출조건 최적화

  • Kim, In-Ho (Kyungbook College of Science Food Factory) ;
  • Kim, Seong-Ho (Dept. of Bio Food Science, Kyungbook College of Science) ;
  • Kwon, Joong-Ho (Dept. of Food Science and Technology Graduate School, Kyungpook National University)
  • Published : 2008.04.30

Abstract

In order to examine the effective components and antioxidative characteristics of Acanthopanacis cortex, response surface methodology was used to optimize the hot water extraction process by analyzing and monitoring the extraction condition characteristics. The total extraction yield was optimized using the extraction temperature of $84.28^{\circ}C$, extraction time of 3.59 hr and 18.37 mL/g as the amount of solvent per sample. For the effective component of eleutheroside E, the optimal extraction temperature, time and amount of solvent per sample were $81.16^{\circ}C$, 3.56 hr, and 19.06 mL/g, respectively; also, for total phenolics, the optimal conditions were $88.45^{\circ}C$, 4.33 hr, and 21.12 mL/g, respectively. Regression equations were deduced for each variable and then eleutheroside E, chlorogenic acid, and antioxidative characteristics were superimposed with the optimal conditions to obtain values for each extraction process factor. The predicted results were $81{\sim}88^{\circ}C$, $3.5{\sim}4.3hr$, and $18{\sim}21mL/g$, respectively. The estimated values for the optimal extraction conditions of Acanthopanacis cortex's effective components and antioxidative characteristics were similar to the experimental results.

오가피(Acanthopanacis cortex)의 유효성분 및 항산화적 특성을 조사하기 위하여 반응표면분석법에 의하여 열수추출 특성을 모니터링 하여 최적추출조건을 설정하였다. 총 추출수율의 최적조건은 추출온도 $84.28^{\circ}C$, 추출시간 3.59 hr 및 시료에 대한 용매비 18.37 mL/g이었고, 유효성분 eleutheroside E에 대한 최적조건은 $81.16^{\circ}C$, 3.56 hr, 19.06 mL/g, 총 페놀성 화합물에 대한 최적조건은 $88.45^{\circ}C$, 4.33 hr, 21.12 mL/g 등으로 각각 나타났다. 각 변수에 대한 회귀식을 도출하여 공정 인자별 오가피의 총 추출수율, 유효성분 eleutheroside E와 chlorogenic acid 함량 및 항산화적 특성에 대한 최적추출조건을 superimposing한 결과, 추출온도 $81{\sim}88^{\circ}C$, 추출시간 $3.5{\sim}4.3hr$ 및 시료에 대한 용매비 $18{\sim}21mL/g$의 범위로 각각 예측되었다. 오가피의 유효성분과 항산화적 특성에 대한 열수추출조건의 예측값은 실제값과 유사하였다.

Keywords

References

  1. 한국약학대학협의회 약전분과회. 1999. 대한약전. 제 7개정. 문성사, 서울, 한국. p 1078
  2. 김창민, 신민교, 안덕균, 이경순. 1998. 완역중약대사전. 정담, 서울, 한국. p 3907-3914
  3. Chung BS, Kim YH. 1986. Studies on the constituents of Acanthopanax koreanum. Kor J Pharmacog 17: 62-66
  4. Lee WT. 1979. Eleutherococcus maxim, Araliaceae and Acanthopanax sp. in Korea. Kor J Pharmacog 10: 103-107
  5. Sawada H, Miyakoshi M, Isoda S, Ida Y, Shoji J. 1993. Saponins from leaves of Acanthopanax sieboldianus. Phytochemistry 34: 1117-1121 https://doi.org/10.1016/S0031-9422(00)90727-1
  6. Zhao YQ, Yang SS, Liu JH, Zhao GR. 1993. Chemical constituents of Acanthopanax senticosus (Rupt. et Maxim.) Harms. Zhongguo Zhong Yao Za Zhi 18: 428-429
  7. AWang JZ, Tasumura H, Shimura K, Ito H. 1992. Antitumor activity of polysaccharide from a Chinese medicinal herb Acanthopanax giraldii Harms. Cancer Lett 65: 79-84 https://doi.org/10.1016/0304-3835(92)90216-I
  8. Kohda H, Tanaka S, Yamaoka Y. 1990. Saponins from leaves of Acanthopanax hypoleeucus Makino. Chem Pharm Bull 38: 3380-3383 https://doi.org/10.1248/cpb.38.3380
  9. Nishib S, Kinoshita H, Takeda H, Okano G. 1990. Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming rats. Chem Pharm Bull 38: 1763-1765 https://doi.org/10.1248/cpb.38.1763
  10. Wagner H, Heur YH, Obermeier A, Tittle G, Bladt S. 1982. Die DC- and HPLC-analyse der Eleutherococcus droge. Planta Med 44: 193-198 https://doi.org/10.1055/s-2007-971445
  11. Yun HS, Kim SO, Kim JH, Cho HI. 1983. Ethoxy-hydroxy- benzoic acid: A platelet antiaggregating substance from Acanthopanacis cortex. Kor J Pharmacog 14: 175-177
  12. Bae EA, Yook CS, Oh OJ, Change SY, Nohara T, Kim DH. 2001. Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull 24: 582-585 https://doi.org/10.1248/bpb.24.582
  13. Chung BS. 1985. Study on biological activities of diterpene component isolated from Acanthopanax koreanum. Amorepacific scholarship foundation series (5), Research papers, Namin, Seoul, Korea. p 519-523
  14. Hong SS, Hwang JS, Lee SI, Hwang BY, Ha KW, Ze KR, Seung RS, Ro JS, Lee KS. 2001. Isolation and quantitative analysis of acanthoside D from Acanthopanacis cortex. Kor J Pharmacogn 32: 316-321
  15. Hirata F, Fujita K, Ishidura Y, Hosoda K, Ishikawa H. 1996. Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122: 135-136 https://doi.org/10.1016/0021-9150(95)05769-2
  16. Jwa CS, Yang YT, Koh JS. 2000. Changes in free sugars organic acids, free amino acids and minerals by harvest time and parts of Acanthopanax koreanum. J Korean Soc Agric Chem Biotechnol 43: 106-109
  17. Jwa CS, Yang YT, Koh JS. 2000 Preparation of extract from Acanthopanax koreanum by extraction conditions and its chemical compositions. J Korean Soc Agric Chem Biotechnol 44: 24-29
  18. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of official analytical chemists, Washington DC, USA. p 31
  19. Myers RH. 1971. Response surface methodology. Allyn and Bacon Inc, Boston, USA
  20. Wanasundara PKJPD, Shahidi F. 1996. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J Food Sci 61:604-607 https://doi.org/10.1111/j.1365-2621.1996.tb13168.x
  21. Hartha LA, James PB. 1992. The mathematica handbook. Compatible with mathematica version 2.0. An inprint of academic press Inc, Harcourt brace & Co, Massachusetts, USA. p 15-511
  22. Kwon JH, Belanger JMF, Pare JRJ. 2003. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology. J Agric Food Chem 51: 1807-1810 https://doi.org/10.1021/jf026068a
  23. Ahn JK, Lee WY, Oh SJ, Park YH. 2000. The contents of chlorogenic acid eleutheroside E in Eleutherococcus senticosus (Rupr. et Mazim.) Harms. J Korean For Soc 89:216-222
  24. Amerine MA, Ough CS. 1980. Methods for analyses of musts and wine. Wiley & Sons, New York, USA. p 176- 180
  25. Blios MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  26. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Boil Chem 51: 1333-1339 https://doi.org/10.1271/bbb1961.51.1333
  27. Miller GL. 1959. Colorimetric method for determination of sugar and related substance. Anal Chem 28: 350-352 https://doi.org/10.1021/ac60111a017
  28. SAS. 1988. SAS/STAT User's guide. Version 6. 4th ed. Cary, NC, USA
  29. Floros JD, Chinnan MS. 1987. Optimization of pimiento pepper lye-peeling process using response surface methodology. Trans of ASAE 30: 560-565 https://doi.org/10.13031/2013.31988
  30. Oh SY, Kim SS, Min BY, Chung DH. 1990. Composition of free sugars, free amino acid, non-volatile organic acids and tannins in the extracts of L. chinensis M., A. acutiloba K., S. chinensis B. and A. sessiliflorum S. Korean J Food Sci Technol 22: 76-81
  31. Yoshino M, Murakami K. 1998. Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Anal Biochem 257: 40-44 https://doi.org/10.1006/abio.1997.2522

Cited by

  1. Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.278
  2. Determination of Eleutherosides and β-Glucan Content from Different Parts and Cultivating Areas of A. senticosus and A. koreanum vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.2082