DOI QR코드

DOI QR Code

TiN 기판 위에 성장시킨 비정질 BaSm2Ti4O12 박막의 구조 및 전기적 특성 연구

Structural and Electrical Properties of Amorphous 2Ti4O12 Thin Films Grown on TiN Substrate

  • 박용준 (요업(세라믹)기술연구원 전자부품.소재본부) ;
  • 백종후 (요업(세라믹)기술연구원 전자부품) ;
  • 이영진 (요업(세라믹)기술연구원 전자부품.소재본부) ;
  • 정영훈 (요업(세라믹)기술연구원 전자부품.소재본부) ;
  • 남산 (고려대학교 신소재공학과)
  • Park, Yong-Jun (Electronic Components and Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-Hoo (Electronic Components and Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Jin (Electronic Components and Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young-Hun (Electronic Components and Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
  • 발행 : 2008.04.30

초록

The structural and electrical properties of amorphous $BaSm_2Ti_4O_{12}$ (BSmT) films on a $TiN/SiO_2/Si$ substrate deposited using a RF magnetron sputtering method were investigated. The deposition of BSmT films was carried out at $300^{\circ}C$ in a mixed oxygen and argon ($O_2$ : Ar = 1 : 4) atmosphere with a total pressure of 8.0 mTorr. In particular, a 45 nm-thick amorphous BSmT film exhibited a high capacitance density and low dissipation factor of $7.60\;fF/{\mu}m2$ and 1.3%, respectively, with a dielectric constant of 38 at 100 kHz. Its capacitance showed very little change, even in GHz ranges from 1.0 GHz to 6.0 GHz. The quality factor of the BSmT film was as high as 67 at 6 GHz. The leakage current density of the BSmT film was also very low, at approximately $5.11\;nA/cm^2$ at 2 V; its conduction mechanism was explained by the the Poole-Frenkel emission. The quadratic voltage coefficient of capacitance of the BSmT film was approximately $698\;ppm/V^2$, which is higher than the required value (<$100\;ppm/V^2$) for RF application. This could be reduced by improving the process condition. The temperature coefficient of capacitance of the film was low at nearly $296\;ppm/^{\circ}C$ at 100 kHz. Therefore, amorphous BSmT grown on a TiN substrate is a viable candidate material for a metal-insulator-metal capacitor.

키워드

참고문헌

  1. International Technology Roadmap for Semiconductors. On the Web. Retrieved February 8, 2008 from http://www.itrs.net
  2. S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh and J. Liu, IEEE Electron Device Lett., 23, 185 (2002) https://doi.org/10.1109/55.992833
  3. H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho and W. K. Choi, IEEE Electron Device Lett., 23, 514 (2002) https://doi.org/10.1109/LED.2002.1004230
  4. S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin and D.-L. Kwong, IEEE Electron Device Lett., 24, 387 (2003) https://doi.org/10.1109/LED.2003.813381
  5. C. Wenger, J. Dabrowski, P. Zaumseil, R. Sorge, P. Formanek, G. Lippert and H.-J. Mussig, Mat. Sci. Semicon. Proc., 7, 227 (2004) https://doi.org/10.1016/j.mssp.2004.09.018
  6. S.-Y. Lee, H. Kim, P. C. Mclntyre, K. C. Saraswat and J.- S. Byun, Appl. Phys. Lett., 82, 2874 (2003) https://doi.org/10.1063/1.1569985
  7. S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin and D.-L. Kwong, IEEE Electron Device Lett., 26, 625 (2005) https://doi.org/10.1109/LED.2005.854378
  8. K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, J. R. Chen, and C. C. Chi, IEEE Electron Device Lett., 26, 504 (2005) https://doi.org/10.1109/LED.2005.851241
  9. 9. K. C. Chiang, C. -C. Huang, G. L. Chen, W. J. Chen, H. L. Kao, Y. -H. Wu, A. Chin and S. P. McAlister, IEEE Trans. Electron Dev., 53, 2312 (2006) https://doi.org/10.1109/TED.2006.881013
  10. K. Wakino, K. Minai and H. Tamura, J. Am. Ceram. Soc., 67, 278 (1984) https://doi.org/10.1111/j.1151-2916.1984.tb18847.x
  11. Y. H. Jeong, J. B. Lim, S. Nahm, H. -J. Sun, and H. J. Lee, IEEE Electron Device Lett., 28, 17 (2007) https://doi.org/10.1109/LED.2006.887634
  12. B.-Y. Jang, B.-J. Kim, S.-J. Lee, K.-J. Lee, S. Nahm, H.- J. Sun and H.-J. Lee, Appl. Phy. Lett., 87, 112902 (2005) https://doi.org/10.1063/1.2048827
  13. Y. H. Jeong, J. C. Kim, J. B. Lim, K. P. Hong, S. Nahm, H. -J. Sun, T. H. Ghong, Y. D. Kim, and H. J. Lee, J. Appl. Phys., 101, 084108 (2007) https://doi.org/10.1063/1.2718277
  14. Z. Ma, A. J. Becker, P. Polakos, H. Huggins, J. Pastalan, H. Wu, K. Watts, Y. H. Wong, and P. Mankiewich, IEEE Trans. Electron Dev., 45, 1811 (1998) https://doi.org/10.1109/16.661229
  15. L. I. Maissel, R. Glang, Handbook of Thin Film Technology, 2nd ed., p. 14-28, McGraw-Hill., New York, USA, (1970)
  16. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 402, John Wiley & Sons, New York, USA, (1981)