DOI QR코드

DOI QR Code

High-Temperature Electrical Transport and Thermoelectric Properties of La0.75Ba0.25MnO3 Ceramics

고온에서의 La0.75Ba0.25MnO3 세라믹스의 전기전도 및 열전특성

  • Published : 2008.04.30

Abstract

In this study, the thermoelectric power and resistivity of the perovskite manganite $La_{0.75}Ba_{0.25}MnO_3$ were investigated in the temperature range 300K-1200K. The electrical resistivity and thermoelectric power indicate a transport mechanism dominated by adiabatic small-polaron hopping. The power factor increases from $2{\times}10^{-6}W/mK^2$ to $1{\times}10^{-5}W/mK^2$ as to the temperature increases from 400K to 1200K, which indicates that the compound is highly feasible as a thermoelectric material at high temperatures.

Keywords

References

  1. P.Migiakis, J. Androulakis and J. Giapintzakis, J. Appl. Phys., 12, 7616 (2003) https://doi.org/10.1063/1.1629393
  2. K. Mastronardi, D. Young, C. C. Wang, P. Khalfan, R. J. Cava and A. P. Ramirez, Appl. Phys. Lett., 74, 1415 (1999) https://doi.org/10.1063/1.123596
  3. G. S. Molas, J. L. Cohn, G.A. Slack and S. B. Schujman, Appl. Phys., Lett., 73, 178 (1998) https://doi.org/10.1063/1.121747
  4. B. C. Sales, D. Mandrus and R. K. Williams, Science., 272, 1325 (1996) https://doi.org/10.1126/science.272.5266.1325
  5. I. Terasaki, Y. Sasago and K. Uchinokura, Phys. Rev. B., 56, R12685 (1997) https://doi.org/10.1103/PhysRevB.56.R12685
  6. T. Kawata, Y. Iguchi, T. Itoh, K. Takahata, and I. Terasaki, Phys. Rev. B., 60, 10584 (1999) https://doi.org/10.1103/PhysRevB.60.10584
  7. H. Nakatsugawa and E. Iguchi, J. Jap. Inst. Metals., 63 (11), 1393 (1999) https://doi.org/10.2320/jinstmet1952.63.11_1393
  8. R. Ang, R. L. Zhang, B.C. Zhao, X. B. Zhu, W. H. Song, and Y. P. Sun, Solid. Stat. Comm., 137, 492 (2006) https://doi.org/10.1016/j.ssc.2005.12.030
  9. M. K. Choi, K. W. Cho, S. C. Ur and I. H. Kim, Kor. J. Mater. Res., 14(11), 802 (2004) https://doi.org/10.3740/MRSK.2004.14.11.802
  10. I. H. Kim, S. W. You, J. B. Park, J. I. Lee, S. C. Ur, K. W. Jamg, G. S. Choi, J. S. Kim and H. J. Kim, Kor. J. Mater. Res., 15(10), 667 (2005) https://doi.org/10.3740/MRSK.2005.15.10.667
  11. R. Funahashi, I. Matsubara and S. Sodeoka, Appl. Phys. Lett., 76, 2385 (2000) https://doi.org/10.1063/1.126354
  12. S. Li, R. Funahashi, I. Matsubara, K. Ueno and H. Yamada, J.Mater.Chem., 9, 1659 (1999) https://doi.org/10.1039/a904413b
  13. J. S. Zhou, J. B. Goodenough, and J. F. Mitchell, Phys. Rev. B., 58, R579 (1997) https://doi.org/10.1103/PhysRevB.58.R579
  14. C. D. Potter, M. Swiat, S. D. Bader, D. N. Argyriou, J. F. Mitchell, D. J. Miller, D. G. Hinks and J. D. Jorgensen, Phys. Rev. B., 57, 72 (1998) https://doi.org/10.1103/PhysRevB.57.72
  15. H. Asano, J. Hayakawa and M. Matsui, Phys. Rev. B., 57, 1052 (1998) https://doi.org/10.1103/PhysRevB.57.1052
  16. B. C. Zhao, Y. P. Sun, W. J. Lu, J. Yang, X. B. Zhu and W. H. Song, Solid. State. Comm., 139, 209 (2006) https://doi.org/10.1016/j.ssc.2006.06.010
  17. G. H. Zheng, Y. Q Ma, X. B. Zhu and Y. P. Sun, Solid. State. Comm., 142, 217 (2007) https://doi.org/10.1016/j.ssc.2007.02.008
  18. W. H. Jung, J.Phys. Condens. Matter., 18, 6091 (2006) https://doi.org/10.1088/0953-8984/18/29/010
  19. M. Ohtaki, H. Koga, T. Tsutomu, K. Eguchi and H. Arai, J. Solid. State. Chem., 120, 105 (1995) https://doi.org/10.1006/jssc.1995.1384
  20. V.L.Kozhevnikov, I. A. Lenoidov, E. B. Mitberg, M. V. Patrakeev, Y. M. Baikov, V. S. Zakhvalinskii and E. Lahederanta, J. Solid. State. Chem., 172, 1 (2003) https://doi.org/10.1016/S0022-4596(03)00050-1
  21. N. G. Begnin, R. I. Zainullina, N. S. Chusheva, V. V. Ustinov and Ya. M. Mukovskii, J. Magn. Magn. Matter., 300, e111 (2006) https://doi.org/10.1016/j.jmmm.2005.10.160
  22. V.A. Cherepanov, E.A. Filonova, V. I. Voronin, and I.F. Berger, J. Solid. State. Chem., 153, 205 (2000) https://doi.org/10.1006/jssc.2000.8743
  23. M. Ohtaki, D. Ogura, K. Eguchi and H. Arai, J. Mater. Chem., 4, 653 (1994) https://doi.org/10.1039/jm9940400653
  24. M. Jaims M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz and D. B. Chrisey, Phys. Rev. B., 54, 11914 (1996) https://doi.org/10.1103/PhysRevB.54.11914
  25. S. Pal, A. Banerjee, E. Rozenberg, and B. K. Chaudhuri, J. Appl. Phys., 89, 4955 (2001) https://doi.org/10.1063/1.1362411
  26. G. Jakob, W. Westerburg, F. Martin and H. Adrian, Phys. Rev. B., 58, 14966 (1998) https://doi.org/10.1103/PhysRevB.58.14966
  27. E.Quenneville, M. Meunier, A. Yelon and F. Morin, J. Appl. Phys., 90(4), 1891 (2001) https://doi.org/10.1063/1.1385356
  28. M.F. Hundley and J. J. Neumeier, Phys. Rev B., 55(17), 11511 (1997) https://doi.org/10.1103/PhysRevB.55.11511
  29. T. T. M. Palsta., A. P. Ramirez, S. W. Cheong, B. R. Zegarski and P. Schiffer, J. Zaanen, Phys. Rev. B., 56, 5140 (1997) https://doi.org/10.1103/PhysRevB.56.5140
  30. J. M. D. Coey, M. Viret and S.Von Molnar, Adv. Phys., 48, 167 (1999) https://doi.org/10.1080/000187399243455
  31. P. Mandal, Phys. Rev. B., 61, 14675 (2000) https://doi.org/10.1103/PhysRevB.61.14675
  32. Y. Zhou, I. Matsubara, R. Funahashi and S. Sodeoka, Mat. Lett., 51, 347 (2001) https://doi.org/10.1016/S0167-577X(01)00317-2

Cited by

  1. Ceramics vol.21, pp.7, 2011, https://doi.org/10.3740/MRSK.2011.21.7.377