DOI QR코드

DOI QR Code

Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration

3차원 소자 집적을 위한 Cu-Cu 접합의 계면접착에너지에 미치는 후속 열처리의 영향

  • Published : 2008.04.30

Abstract

$1.5\;{\mu}m$-thick copper films deposited on silicon wafers were successfully bonded at $415^{\circ}C$/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than $10.4\;J/m^2$ as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than $300^{\circ}C$ had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over $400^{\circ}C$. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.

Keywords

References

  1. R. Tadepalli, Ph. D. Thesis, p. 13-17, Massachuesetts Institute of Technology, USA (2006)
  2. K. N. Chen, C. S. Tan, A. Fan and R. Reif, Appl. Phys. Lett., 86, 011903 (2005) https://doi.org/10.1063/1.1844609
  3. W. Ruythooren, A. Beltran and R. Labie, in proceedings of the Electronics Packaging Technology Conference (Singapore, December 2007) p.51
  4. J. M. Koo, B. Q. Vu, Y. N. Kim, J. B. Lee, J. W. Kim, D. U. Kim, J. H. Moon and S. B. Jung, JEM., 37(1), 118 (2007) https://doi.org/10.1007/s11664-007-0301-7
  5. A. Fan, A. Rahman and R.Reif, Electrochemical and Solid-Sate Letters., 2(10), 534 (1999) https://doi.org/10.1149/1.1390894
  6. K. N. Chen, S. M. Chang, L. C. Shen and R. Reif, J. E. M., 35(5), 1082 (2006)
  7. C. S. Tan, R. Reif, N. D. Theodore and S. Pozder, Appl, Phys. Lett., 87, 201909 (2005) https://doi.org/10.1063/1.2130534
  8. K. N. Chen, A. Fan, C. S. Tan and R. Reif, J. E. M., 32(12), 1371 (2003)
  9. K. N. Chen, A. Fan, C.S. Tan and R. Reif, J. E. M., 35(2), 230 (2006)
  10. R. Shaviv, S. Toham and P. Woytowitz, Microelectromic. Eng., 82, 99 (2005) https://doi.org/10.1016/j.mee.2005.06.006
  11. H. Zhenyu, Z. Suo, X. Guanghai, H. Jun, J. H. Prevost and N. Sukumar. Eng. Fracture Mech., 72, 2584 (2005) https://doi.org/10.1016/j.engfracmech.2005.04.002
  12. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, J. Appl. Mech., 111, 77 (1989)
  13. R. Tadepalli and C. V. Thompson, Appl. Phys. Lett., 90, 151919 (2007) https://doi.org/10.1063/1.2720297
  14. S.M. Yi, J. U. An, S. S. Hwang, J. R. Yim, Y. H. Huh, Y. B. Park and Y. C. Joo, Thin Solid Films., 516, 2325 (2008) https://doi.org/10.1016/j.tsf.2007.08.134
  15. N. Tomesakai , M. Suzuki and J. Komeno, J. Electrochem. Soc., 140, 2432 (1993) https://doi.org/10.1149/1.2220838
  16. K. Hirodawa, Y. Yokokawa and M. Oku, S. I. A., 3(2), 81 (1981)

Cited by

  1. Low Temperature Cu–Cu Bonding Technology in Three-Dimensional Integration: An Extensive Review vol.140, pp.1, 2018, https://doi.org/10.1115/1.4038392