DOI QR코드

DOI QR Code

Recent Development in Polymer Ferroelectric Field Effect Transistor Memory

  • Park, Youn-Jung (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeong, Hee-June (Department of Materials Science and Engineering, Yonsei University) ;
  • Chang, Ji-Youn (Department of Materials Science and Engineering, Yonsei University) ;
  • Kang, Seok-Ju (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Cheol-Min (Department of Materials Science and Engineering, Yonsei University)
  • Published : 2008.03.30

Abstract

The article presents the recent research development in polymer ferroelectric non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on inorganic ferroelectric materials. Particular emphasis is made on device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). In addition, various material and process issues for realization of polymer ferroelectric non-volatile memory are discussed, including the control of crystal polymorphs, film thickness, crystallization and crystal orientation and the unconventional patterning techniques.

Keywords

References

  1. S. Ducharme, T. J. Reece, C. M. Othon, and R. K. Rannow, 'Ferroelectric polymer Langmuire-Blodgett films for nonvolatile memory applications,' IEEE Transaction on Device and Materials Reliability, vol. 5, no. 4, pp. 720-735, Dec. 2005 https://doi.org/10.1109/TDMR.2005.860818
  2. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G. B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer, 'Ferroelectric thin films: review of materials, properties, and applications,' Journal of Applied Physics, vol. 100, Sep. 2006
  3. A. Sheikholeslami and P. G. Gulak, 'A Survey of circuit innovations in ferroelectric random-access memories,' Proceedings of the IEEE, vol. 88, no. 5, pp. 667-689, May 2000 https://doi.org/10.1109/5.849164
  4. T. Sumi, N. Moriwaki, G. Nakane, T. Nakakuma, Y. Judai, Y. Uemoto, Y. Nagano, S. Hayashi, M. Azuma, E. Fujii, S.I. Katsu, T. Otsuki, L. McMillan, C. Paz de Araujo, and G. Kano, 'A 256 kb nonvolatile ferroelectric memory at 3 V and 100 ns,' Digest of Technological Paper - IEEE International Solid-State Circuits Conference, pp. 268-269, Feb. 1994
  5. S. S. Eaton, D. B. Butler, M. Parris, D. Wilson, and H. McNeillie, 'A ferroelectric nonvolatile memory,' Digest of Technological Paper - IEEE International Solid-State Circuits Conference, vol. 130, pp. 130-131, Feb. 1988
  6. J. Evans and R. Womack, 'An experimental 512-bit nonvolatile memory with ferroelectric storage cell,' IEEE Journal of Solid-State Circuits, vol. 23, pp. 1171-1175, no. 5, Oct. 1988 https://doi.org/10.1109/4.5940
  7. R. Womack and D. Tolsch, 'A 16 kb Ferroelectric nonvolatile memory with a bit parallel architecture,' Digest of Technological Paper - IEEE International Solid-State Circuits Conference, vol. 351, pp. 242-243, Feb. 1989
  8. T. Hayashi, Y. Igarashi, D. Inomata, T. Ichimori, T. Mitsuhashi, K. Ashikaga, T. Ito, M. Yoshimaru, M. Nagata, S. Mitarai, H. Godaiin, T. Nagahama, C. Isobe, H. Moriya, M. Shoji, Y. Ito, H. Kuroda, and M. Sasaki, 'A novel stack capacitor cell for high density FeRAM compatible with CMOS logic,' Technology Digest - IEEE International Electron Devices Meet., pp. 543-546, Dec. 2002
  9. H. McAdams, R. Acklin, T. Blake, D. Xiao-Hong, J. Eliason, J. Fong, W.F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, Ning Qian, Yunchen Qiu, K.A. Remack, K.A. J. Rodriguez, Roscher, A. Seshadri, and S.R. Summerfelt, 'A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process,' IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 667-677, Apr. 2004 https://doi.org/10.1109/JSSC.2004.825241
  10. T.S.Moise, S. R. Summerfelt, H. McAdams, S. Aggarwal, K.R. Udayakumar, F.G. Celii, J.S. Martin, G. Xing, L. Hall, K.J. Taylor, T.Hurd, J. Rodriguez, K. Remack, M.D. Khan, K. Boku, G. Stacey, M. Yao, M.G.Albrecht, E. Zielinski, M. Thakre, S. Kuchimanchi, A. Thomas, B. McKee, J. Rickes, A. Wang, J. Grace, J. Fong, D. Lee, C. Pietrzyk, R. Lanham, S.R. Gilbert, D. Taylor, J. Amano, R. Bailey, F. Chu, G. Fox, S. Sun, and T. Davenport, 'Demonstration of a 4 Mb, high density ferroelectric memory embedded within a 130 nm, 5 LM Cu/FSG logic process,' Technology Digest - IEEE International Electron Devices Meet., pp. 535-538, Dec. 2002
  11. K. Sugibuchi, Y. Kurogi, and N. Endo, 'ferroelectric field-effect memory device using $Bi_4Ti_3O_{12}$ film,' Journal of Applied Physics, vol. 46, no. 7, pp 2877-2881, Jul. 1975 https://doi.org/10.1063/1.322014
  12. A. Kingon, P. Muralt, N. Setter, and R. Waser, 'Ceramic materials for electronics,' edited by R. E. Buchanan (Dekker, New York), pp. 465-526, 2004
  13. H. T. Lue, C. J. Wu, and T. Y. Tseng, 'Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory,' Ultrasonics, Ferroelectrics and Frequency Control, vol. 5, no. 1, pp. 5-14, Jan. 2003
  14. S. L. Miller and P. J. McWhorter, 'Physics of the ferroelectric nonvolatile memory field effect transistor,' Journal of Applied Physics, vol. 72, no. 12, pp. 5999-6010, Dec. 1992 https://doi.org/10.1063/1.351910
  15. S. H. Lim, A. C. Rastogi, and S. B. Desu, 'Electrical properties of metal-ferroelectricinsulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application,' Journal of Applied Physics, vol. 96, no. 10, pp. 5673-5682, Nov. 2004 https://doi.org/10.1063/1.1785836
  16. I. M. Ross, 'Semiconductive translating device,' U.S. Patent, no. 2791760, 1957
  17. J. L. Moll and Y. Tarui, 'A new solid state memory resistor,' IEEE Transactions on Electron Devices, ED-10, pp. 338, Sep. 1963
  18. S. Y. Wu, 'A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,' IEEE Transactions on Electron Devices, ED-21, pp. 499-504, Aug. 1974
  19. Y. Arimoto and H. Ishiwara, 'Current status of ferroelectric random-access memory,' MRS Bulletin., vol. 29, no. 11, pp. 823-828, Nov. 2004 https://doi.org/10.1557/mrs2004.235
  20. H. Ishiwara, Material Research Society Symposium Proc., vol. 596, pp427, 2000
  21. K. Takahashi, K. Manabe, A. Morioka, T. Ikarashi, T. Yoshihara, H. Watanabe, and T. Tatsumi, Abstracts of the International Conference Solid State Devices and Materials (Tokyo)(unpublished) no. 1-2, 2004
  22. H. Kohlstedt and H. Ishiwara, 'In nanoelectronics and information technology: advanced electronic materrial and novel devices,' edited by R. Waser (Wiley-VCH, Weinheim) , pp. 387, 2002
  23. Q. M. Zhang, H. Xu, F. Fang, Z.-Y. Cheng, and F. Xia, 'Critical Thickness of Crystallization and Discontinuous Change in Ferroelectric Behavior with Thickness in Ferroelectric Polymer Thin Films,' Journal of Applied Physics, vol. 89, no. 5, pp. 2613-2616, Mar. 2001 https://doi.org/10.1063/1.1344585
  24. F. Xia, H. Xu, F. Fang, B. Razavi, Z.-Y. Cheng, Y. Lu, B. Xu, and Q. M. Zhang, 'Thickness dependence of ferroelectric polarization switching in poly(vinylidene fluoride?trifluoroethylene) spin cast films,' Applied Physics Letters, vol. 78, no. 8, pp. 1122-1124, Feb. 2001 https://doi.org/10.1063/1.1351848
  25. Q. Gao and J. I. Scheinbeim, 'Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly(vinylidene fluoride),' vol. 33, no. 20, pp. 7564-7572, Sep. 2000 https://doi.org/10.1021/ma000111i
  26. Y. Tajitsu, K. Ishida, S. Kanbara, H. Ohigashi, M. Date, and E. Fukada, 'Temperature dependence of switching characteristics in polyurea-5 thin films,' Japanese Journal of Applied Physics, vol. 37, no. 9B, pp. 5375-5378, Sep. 1998 https://doi.org/10.1143/JJAP.37.5375
  27. T. T. Wang, J. M. Herbert, and A. M. Glass, 'The applications of ferroelectric polymers Glasgow,' (Blackie, U.K.), 1988
  28. H. S. Nalwa, 'Ferroelectric polymer' (Marcel Dekker, New York) , pp. 895, 1995
  29. A. J. Lovinger, 'Poly(vinylidene fluoride) developments in crystalline polymers?I' (D. C. Basset, Ed. London, U.K.: Applied Sciences) , pp. 195-273, 1981
  30. T. Furukawa, 'Ferroelectric properties of vinylidene fluoride copolymers,' Phase Transit., vol. 18, no. 3-4, pp. 143-211, 1989 https://doi.org/10.1080/01411598908206863
  31. R. G. Kepler and R. A. Anderson, 'Ferroelectric polymers,' Advanced in Physics, vol. 41, no. 1, pp. 1-57, Jan./Feb. 1992 https://doi.org/10.1080/00018739200101463
  32. R. G. Kepler and R. A. Anderson, 'Ferroelectricity in polyvinylidene fluoride,' Journal of Applied Physics, vol. 49, no. 3, pp. 1232-1235, Mar. 1978 https://doi.org/10.1063/1.325011
  33. R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, 'Highperformance solution-processed polymer ferroelectric field-effect transistors,' Nature Materials, vol. 4, no. 3, pp. 243-248, Mar. 2005 https://doi.org/10.1038/nmat1329
  34. A. J. Lovinger, 'Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoroethylene,' Macromolecules, vol. 16, no. 9, pp. 1529-1534, Jan. 1983 https://doi.org/10.1021/ma00243a021
  35. K. Noda, K. Ishida, T. Horiuchi, K. Matsushige, and A. Kubono, 'Structures of vinylidene fluoride oligomer thin films on alkali halide substrate,' Journal of Applied Physics, vol. 86, no. 7, pp. 3688-3693, Oct. 1999 https://doi.org/10.1063/1.371279
  36. K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, 'Structures and ferroelectric natures of epitaxially grown vinylidene fluoride oligomer thin films,' Japanese Journal of Applied Physics, vol. 39, no. 11, pp. 6358-6363, Nov. 2000 https://doi.org/10.1143/JJAP.39.6358
  37. A.C. Rastogi and S.B. Desu, 'Ferroelectric poly(vinylidene fluoride) thin film grown by lowpressure chemical vapor polymerization,' Chemical Vapor Deposition, vol. 12, pp. 742-750, Dec. 2006 https://doi.org/10.1002/cvde.200606505
  38. A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Uudin, and A. Zlatkin, 'Two-dimensional ferroelectric films,' Nature, vol. 391, pp. 874-877, Feb. 1998 https://doi.org/10.1038/36069
  39. F. Xia and Q. M. Zhang, 'Schottky emission at the metal polymer interface and its effect on the polarization switching of ferroelectric poly (vinylidene fluoride-trifluoroethylene) copolymer thin films,' Applied Physics Letters, vol. 85, no. 10, pp. 299-306, Sep. 2004 https://doi.org/10.1063/1.1772859
  40. G. Zhu, Z. Zeng, L. Zhang, and X. Yan, 'Polarization fatigue in ferroelectric vinylidene fluoride and trifluoroethylene copolymer films,' Applied Physics Letters, vol. 89, pp. 102905-1-10292905-3, Sep. 2006 https://doi.org/10.1063/1.2340080
  41. Y. J. Park, S. J. Kang, C. Park, K. J. Kim, H. S. Lee, M. S. Lee, U. Chung, and I. J. Park, 'Irreversible extinction of ferroelectric polarization in P(VDF-TrFE) thin films upon melting and recrystallization,' Applied Physics Letters, vol. 88, pp. 242908-1-242908-3, Sep. 2006 https://doi.org/10.1063/1.2207831
  42. H. Xu, J. Zhong, X. Liu, J. Chen, and D. Shen, 'Ferroelectric and switching behavior of poly (vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface,' Applied Physics Letters, vol. 90, pp. 092903-1-092903-3, Mar. 2007 https://doi.org/10.1063/1.2710477
  43. Y. J. Park, S. J. Kang, C. Park, E. Woo, K. Shin, and K. J. Kim, 'Recovery of remanent polarization of poly(vinylidene fluoride-trifluoroethylene) thin film after high temperature annealing using topographically nanostructured aluminium bottom electrode,' Applied Physics Letters, vol. 90, pp. 222903-1-222903-3, May 2007 https://doi.org/10.1063/1.2743389
  44. Y. J. Park, S. J. Kang, C. Park, B. Lotz, A. Thierry, K. J. Kim, and J. Huh, 'molecular and crystalline microstructure of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) ultrathin films on bare and self-assembled monolayermodified Au Substrates,' Macromolecules, vol. 41, no. 1, pp. 109 - 119, Oct. 2008 https://doi.org/10.1021/ma0718705
  45. T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, 'Nonvolatile memory element based on a ferroelectric polymer Langmuir?Blodgett film,' Applied Physics Letters, vol. 82, no. 1, pp. 142-144, Jan. 2003 https://doi.org/10.1063/1.1533844
  46. S. Fujisaki, H. Ishiwara, and Y. Fujisaki, 'Lowvoltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric- insulator-semiconductor diodes,' Applied Physics Letters, vol. 90, pp. 162902-1 - 162902-3, Apr. 2007 https://doi.org/10.1063/1.2723678
  47. R. Schroeder, L. A. Majewski, and M. Grell, 'Allorganic permanent memory transistor using an amorphous, spin-cast ferroelecric-like gate insulator,' Advanced Materials, vol. 16, no. 7, pp. 633-636, Apr. 2004 https://doi.org/10.1002/adma.200306187
  48. K. N. N. Unni, R. de Bettignies, S. Dabos-Seignon, and J. Nunzi, 'A nonvolatile memory element based on an organic field-effect transistor,' Applied Physics Letters, vol. 85, no. 10, pp. 1823 - 1825, Sep. 2004 https://doi.org/10.1063/1.1788887
  49. Y. Matsuo, T. Ijicji, H. Yamada, J. Hatori, and S. Ikehata, 'Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene,' Central Eurpean Journal of Physics, vol. 2, no.2, pp. 357-366, Jan. 2004 https://doi.org/10.2478/BF02475636
  50. R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. D. Leeuw, 'Highperformance solution-processed polymer ferroelectric field-effect transistor,' Nature Materials, vol. 4, pp.243 - 2005, Feb. 2005 https://doi.org/10.1038/nmat1329
  51. R. C. G. Naber, P. W. M. Blom, A.W. Marsman, and D. M. de Leeuw, 'Low voltage switching of a spin cast ferroelectric polymer,' Applied Physics Letters, vol. 85, pp. 2032-2034, Jul. 2004 https://doi.org/10.1063/1.1788885
  52. F. A. Yildirim, C. Ucurum, R. R. Schliewe, R. M. Meixner, H. Goebel, and W. Krautschneider, 'Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors,' Applied Physics Letters, vol. 90, pp. 083501-1-083501-3, Feb. 2007 https://doi.org/10.1063/1.2591314
  53. S. H. Noh, W. Choi, M. S. Oh, D. K. Hwang, K. Lee, S. Im, S. Jang, and E. Kim, 'ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators,' Applied Physics Letters, vol. 90, pp. 253504-1-253504-3, Jun. 2007 https://doi.org/10.1063/1.2749841
  54. S. J. Kang, Y. J. Park, J. Sung, P. S. Jo, C. Park, K. J. Kim, and B. O. Cho, 'Spin cast ferroelecric beta poly(vinylidene fluoride) thin films via rapid thermal annealing,' Applied Physics Letters, vol. 92, pp. 012921-1-012921-1, Jan. 2008 https://doi.org/10.1063/1.2830701
  55. Wang, J. Li, H. Liu, J. Duan, Y. Jiang, and S. Yan, 'On the $\alpha$$\rightarrow$ $\beta$transition of carbon-coated highly oriented PVDF ultrathin film induced by melt recrystallization,' Journal of the American Chemical Society, vol. 125, no. 6, pp.1496-1497 https://doi.org/10.1021/ja029352r
  56. S. J. Kang, Y. J. Park, J. Hwang, H. J. Jeong, J. S. Lee, K. J. Kim, H. Kim, J. Huh, and C. Park, 'Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting,' Advanced Materials, vol. 19, no. 4, pp. 581-586, Feb. 2007 https://doi.org/10.1002/adma.200601474
  57. Z. Hu, G. Baralia, V. Bayot, J.-F. Gohy, and A. M. Jonas, 'Nanoscale control of polymer crystallization by nanoimprint lithography,' Nano Letters, vol. 5, no. 9, pp. 1738-1743, Jul. 2005 https://doi.org/10.1021/nl051097w
  58. Y. J. Park, Y. S. Kang, and C. Park, 'Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions,' European Polymer Journal, vol. 41, pp. 1002-1012, Jan. 2005 https://doi.org/10.1016/j.eurpolymj.2004.11.022
  59. L. Zhang, S. Ducharme, and J. Li, 'Microimprinting and ferroelectric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer films,' Applied Physics Letters, vol. 91, pp. 172906-1-172906-3, Oct. 2007 https://doi.org/10.1063/1.2800803
  60. K. Kimura, K. Kobayashi, H. Yamada, and K. Matsushige, 'investigation of molecular chain orientation change of polymer crystals in phase transitions by friction anisotropy measurement,' Langmuir, vol. 23, no. 9, pp. 4740-4745, Feb. 2007 https://doi.org/10.1021/la063270p

Cited by

  1. High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory vol.22, pp.14, 2012, https://doi.org/10.1002/adfm.201200290
  2. Non-volatile organic memory with sub-millimetre bending radius vol.5, pp.2041-1723, 2014, https://doi.org/10.1038/ncomms4583
  3. Nanoscale memory devices vol.21, pp.41, 2010, https://doi.org/10.1088/0957-4484/21/41/412001
  4. Fabrication and Electrical Properties of P(VDF-TrFE)/Bi3.5Nd0.5Ti3O12 Bi-Layer Composite Ferroelectric Thin Films vol.320, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.320.170
  5. Dependence of Ferroelectric Film Formation Method on Electrical Characteristics in Solution-processed Ferroelectric Field Effect Transistor vol.50, pp.7, 2013, https://doi.org/10.5573/ieek.2013.50.7.102
  6. High temperature-dependent imprint and switching mechanism of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with electroactive interlayers vol.106, pp.2, 2015, https://doi.org/10.1063/1.4905895