현금 인출기 사용자의 선글라스 및 마스크 인식 시스템

임동락*, 고재필**

요 약

본 논문에서는 현금 인출기 사용자의 선글라스 및 마스크를 인식하는 시스템을 설명한다. 제안하는 시스템은 얼굴음파를 먼저 추출하고 이로부터 눈과 입의 위치를 추정한다. 마지막으로, 눈과 입 영역에 대해 각각 허스토그램 인텍싱 기법을 적용하여 선글라스 및 마스크를 인식한다. 눈이나 입 영역이 가려진 상태에서 얼굴음파 추출과 눈 및 입의 위치 추정을 위해 얼굴모양모델을 도입한다. 얼굴모양모델의 정합성을 향상시키기 위해 2단계에 걸친 얼굴후보영역 검출을 도입하고 모델의 초기위치를 변화하여 반복 정합을 실시한다. 반복모델에 기반한 얼굴후보영역 검출 방법의 성능을 보장하기 위해서 반복모델을 자동으로 갱신할 수 있도록 시스템을 구성한다. 실험에서는 연구실에서 획득한 영상에 대하여 시스템의 성능에 관한 실험을 제시하고 마스크 및 선글라스 인식 결과를 보인다.

A System for Recognizing Sunglasses and a Mask of an ATM User

DongAk Lim*, Jaepil Ko**

ABSTRACT

This paper presents a system for recognizing sunglasses and a mask of an ATM (Automatic Teller Machine) user. The proposed system extracts firstly facial contour, then from this extraction results it estimates the regions of eyes and mouth. Finally, it recognizes sunglasses and a mouth using Histogram Indexing based on those regions. We adopt a face shape model to be able to extract facial contour and to estimate the regions of eyes and mouth when those regions are occluded by sunglasses and a mask. To improve the fitting accuracy of the shame model, we adopt 2-step face detection method and conduct fitting several times by varying the initial position of the model instance. To achieve a good performance of the face detection method based on a background model, we enable the system to automatically update the background model. In experiment, we present some experiments on setting parameters of the system with images taken from in our laboratory, and demonstrate the results of recognizing sunglasses and a mask.

Key words: ATM security(ATM보안), Face Detection(얼굴검출), Face Contour Extraction(얼굴음파추출), Active Shape Model, Histogram Indexing(허스토그램인텍싱)

1. 서 론

시간과 장소의 제약을 받지 않고 24시간 현금 인출을 가능하게 하는 현금 인출기는 주 5일제 근무제와 더불어 그 사용량이 증가하고 있는 추세이다. 이에 따라 관련 범죄도 증가하고 있어, 이를 예방하기 나 사후범인 색출을 용이하게 하기 위한 보안기술이 요구되고 있다. 영상기반의 현금 인출기 보안 시스템

※ 교신저자(Corresponding Author) : 고재필, 주소 : 경북 구미시 양호동 1번지(730-701), 전화 : 031-478-7529, FAX : 031-478-7529, E-mail : nonezero@kumoh.ac.kr
 접수일 : 2007년 3월 9일, 원고일 : 2007년 11월 14일

* 금융공과대학교 컴퓨터공학부

** 경희지회, 금융공과대학교 컴퓨터공학부

템은 경제적이며 사용자의 거부감을 줄일 수 있는 방법이다.

국내에서는 1990년대 후반 일부 벤처기업을 중심으로 초보적인 얼굴검출 기술에 기반한 시도가 이루 어졌으나 당시에는 상용화 가능 수준에 미치지는 못하였다. 또한, 현금 인식기 응용이 얼굴검출 연구의 대표적인 응용사례로 언급되고는 있으나, 실제로 이 자체를 위한 연구결과는 찾아보기 어렵다. 초종기에 시도 되었던 방법은 정상 얼굴만을 검출할 수 있는 얼굴검출 기법을 단순히 적용하여 검출기의 성공여 부로서 정상얼굴과 비정상얼굴을 구분하고자 하였 다. 즉, 얼굴이 제대로 검출되지 않는 경우에 선플라 스나 마스크 착용을 가정하였기 때문에 마스크와 선 플라스 착용을 구분하는 문제가 남아있다. 특히, 마 스크나 선플라스를 착용한 얼굴영상은 이들을 적용 하지 않은 얼굴영상과 다르기 때문에 기존의 고성 능 얼굴검출 기법 [1-8]을 그대로 적용해서는 마스크 나 선플라스 착용 얼굴을 검출할 수 없다.

적관적으로 선플라스나 마스크 착용여부를 판별 하기 위해서는 얼굴 검출기, "선플라스 착용 얼 굴 검출기", "마스크 착용 얼굴 검출기", "선플라스 및 마스크 착용 얼굴 검출기를" 설계하고 이들의 판 정결과를 활용할 수 있다. 그러나, 이러한 방법은 회 전, 크기, 이동, 조명등에 강한 각 검출기의 성능이 매우 어렵다는 단점이 있다. 본 논문에서는 선플라스 나 마스크 착용 얼굴이라도 얼굴의 음영은 변하지 않는다는 점과 얼굴영상을 성공적으로 검출하면 이 로부터 눈 및 입 영역을 쉽게 추출하여 간단한 방법 으로 선플라스 및 마스크 착용여부를 판별할 수 있다 는 점을 염두 하여 시스템을 설계하였다.

본 시스템에서는 얼굴의 외양정보를 활용할 수 없 기 때문에, 1차 얼굴후방 영역 검출단계에서는 사용 자의 움직임 정보에 주로 의존하면서 형태정보도 함께 활용하여 간단한 방법으로 얼굴의 위치를 대략적 으로 파악한다. 2차 얼굴후방 영역 검출에서는 사용 자의 움직임이 없거나 미세한 경우에 대처하기 위해 입영상과 정형영상과의 차이를 활용한다. 이러한 기법의 성능은 입영상의 적절성에 의존하기 때문에 자동으로 생산 가능한 Robust Principal Component Analysis (RPCA) [15]에 기반한 배경모델을 도 입하고 시스템 설계에서 이를 고려하였다. 즉, 배경 모델을 생성하기 위한 데이터는 적절한 거리 센싱 결과와 영상으로부터 사용자의 움직임 양을 추정하 고 이를 토대로 구분되는 시스템 상태를 대기상태일 때 주기적으로 획득할 수 있도록 하였다. 그러나, 배경 모델을 생성하기 위해서는 사용자의 움직임이 전혀 없는 상황에서 확득된 영상들만을 수집해야 하는데, 대기상태에서 획득한 영상 중에는 현금 인식기 앞을 단순히 지나가는 사람이 포함되기도 한다. RPCA는 이러한 문제점을 해결해 준다.

얼굴모양모델의 정합을 통해 모델의 한 변형으로 새 얼굴영상을 검출하기 때문에, 입영정보가 일치된 변형된 모델로부터 쉽게 눈과 입 영역을 추정할 수 있다. 그러나, 얼굴의 포즈변화와 같은 원인으로 인해 정합정도가 낮은 경우 눈 및 입 영역 추정 오류 가 생긴다. 따라서, 눈 및 입 영역에 대한 선플라스 및 마스크 착용판별은 크기, 이동, 회전 등에 강인한 히스토그램인텐스 [16] 기법을 적용한다.

본 논문의 구성은 다음과 같다. 2장에서는 시스템 개요를 설명한다. 3장에서는 얼굴모양검출과정을 그리고 4장에서는 선플라스 및 마스크 착용함의 방법을 상세히 설명한다. 5장에서는 얼굴모양과 선플라스 및 마스크 착용 인식결과를 제공한다. 그리고, 마지막 6장에서는 결론을 내린다.
2. 시스템 개요

시스템은 그림 1에 도시한 사용자의 사용 환경을 가정한다. 기기에 설치된 카메라는 차상에서 80센티
정도의 높이에서 60도 위쪽을 향하도록 설치되어 사
용자의 상반신을 비교적 배경이 단순한 천장이 촬영
되도록 하였으며 사용자의 바로 뒤편에 대기하는 사용
자가 촬영될 수 있는 소치를 줄이도록 고려되었다.
또한, 적외선 거리 센서를 장착하여 사용자의 접근을
탐지할 수 있도록 하였다.

그림 2는 제안하는 시스템의 구성을 보여준다. 시
스템은 대기상태와 동작상태로 구성된다. 사용자가
시스템에 다가와서 일정 시간 체류하면 시스템은 대
기상태에서 동작상태로 넘어간다. 동작상태에서는 2
차례에 걸쳐 얼굴후보영역 검출을 수행하고, 이를 기
반으로 얼굴유효을 추출한다. 추출된 유효범위로부터
눈과 입의 위치를 추정하고, 이를 기반으로 얼굴거리는
배경도면을 통해 벡경영상 수치적으로 결정한다.

3 얼굴유효 추출

3.1 얼굴유효 추출 흐름도

사용자 접근탐지에서 얼굴유효 추출까지의 세부
적인 처리과정은 그림 3에 제시하였다. 사용자의 접근
탐지를 위해 차영상과 적외선 거리 센서 정보를
활용한다. 만약 접근이 확인되면 현재 영상을 벡경영
상을 위한 데이터베이스에 저장한다. 그렇지 않으면
얼굴후보영역 검출 단계로 넘어간다. 얼굴후보 검출
은 두 단계로 프로세스화 기법의 1차 후보검출 방법과
배경모델을 이용한 2차 후보검출 단계를 차례대로
적용한다. 얼굴후보영역 검출이 이루어지면 얼굴모
양모델을 이용하여 얼굴의 유효을 추출한다. 주요 단
계들에 대한 상세한 설명은 3.2, 3.3, 3.4, 3.5절에서 각
각 설명한다.

3.2 사용자 접근탐지

사용자의 접근은 적외선 센서로부터 얻은 사용자
와 기간의 거리와 저 프레임 영상과 이전 프레임
영상의 차영상으로부터 추정하는 유효으로서의 판
단한다. 사용자의 유효이 느린 경우는 차영상에서
변화의 정도가 작기 때문에 추정한 유효값 영역이
작아지고, 유효값이 빠른 경우는 모션 호림에 의해
변화의 정도가 크기 때문에 추정한 유효값 영역이
넓어지는 문제점이 있다. 느리거나 빠른 유효값에 상
관없이 변화의 정도를 일정하게 유지시켜 주기 위해
다음과 같이 모션량을 정의한다.

\[
\sum_{k=1}^{N} d(f_k, f_{k+1}) / N \\
d(f_1, f_2) = \begin{cases} 1, & \text{if } |f_1 - f_2| > 0 \\ 0, & \text{otherwise} \end{cases}
\]

(1)

그림 1. 시스템 사용환경

그림 2. 시스템 구성

그림 3. 얼굴유효 추출 흐름도
본 논문에서 사용한 정해진 간격은 19~45cm, 정해진 시간은 10초, 그리고 정해진 모션량은 0.78로 설정하였다.

3.3 움직임정보 기반 1차 얼굴후보영역 검출

본 시스템에서는 얼굴의 외양정보를 활용할 수 없기 때문에 뛰어난 성능을 보이는 기존의 얼굴검출 기법들을 적용할 수가 없다. 본 시스템에서는 단순히 사용자의 움직임 정보에 주로 의존하면서 형태정보도 함께 활용하여 간단한 투영 기법으로 얼굴의 위치를 대략적으로 파악한다. 그림 5는 1차 얼굴검출 과정을 보여준다.

수직성분의 예지 정보와 차양상의 합을 이용하여 시각분석후 수평투영하여 마음 상단을 먼저 알아내고, 수평성분의 예지 정보와 차양상의 합을 이용한 후 수직투영하여 얼굴의 너비를 알아낸다. 마지막으로, 얼굴의 넓이와 너비의 비율이 12의 정도를 활용하여 얼굴영역을 검출한다.

사용자에 따른 움직임의 적절한 복제가 없으면 움직임이 포함된 움직임을 요구하여 대략 10초 정도로 150프레임 정도의 영상 시퀀스를 획득한다.

적절한 시퀀스의 차양상의 구하고 모션량을 구한다. 모션량의 최소값과 최대값 사이를 3등분 하여, 상, 중, 하로 구분한다.

10명의 실험자로부터 얻은 각 구간별 모션량 평균을 구하고, 중간과 상간 그리고 중간과 하간 평균의 중심을 각각 상간, 하간, 하간 구간으로 설정한다.

시스템은 다음 두 가지 조건을 만족하면 사용자가 기기 사용을 위해 다가왔다고 간주하고 대기상태에서 동작상태로 전환된다.

적절한 설정 기반 거리 측정: 사용자와 ATM과의 간격이 정해진 거리 이내이면서 정해진 시간 동안 유지될 때.

시간변화 영상에서의 모션량 측정: 정해진 모션량 이상이 정해진 시간 동안 유지될 때.

그림 4, 5는 1차 얼굴후보영역 검출 과정
3.4 RPCA기반 배경모델을 이용한 2차 얼굴후보 영역 검출

중심적이 두드려지거나 두터운 경우 차원상에 기반한 얼굴영역검출의 정확도를 높이기 위해 입력영상과 배경영상의 차원성을 이용한다. 이 경우 배경영상이 고정되지 않고 지속적으로 갱신되어야 성능이 보장된다. 이를 위해, 대기상태에서 (사용자가 금지 입력을 받을 경우) 지속적으로 확득한 영상을 이용하여 배경모델을 갱신하고 이로부터 배경영상 생성한다. 본 논문에서는 확득한 영상을 중에서 순수하게 배경만 포함되어 있는 영상을 꽃아 없이 대기상태에서 확득한 영상 전체를 그대로 사용하기 위해 RPCA를 도입하였다.

RPCA를 이용하여 얼굴후보 영역을 검출하는 과정은 다음과 같다. 먼저, \(F=\{f_1, f_2, \ldots, f_n\} \)는 \(d \times n \)차원의 행렬이라고 하자. 여기서 \(f \)는 하나의 영상을, \(n \)은 학습영상의 수를, \(d \)는 각 영상의 화소 수를 나타낸다. \(F \)에 대한 \(k \)개의 주성분을 \(B\{b_1, \ldots, b_k\} \in \mathbb{R}^{d \times k} \)라고 하자. 그러면, 입력영상 \(F \)와 RPCA를 이용하여 얻어낸 입력영상 \(BB^Tf \)는 그 \(k \)와 같이 배경만으로 구성된다. 이것은 사람이 포함된 100장의 영상을 포함하여 총 100장의 영상을 대상으로 RPCA를 수행하고 분산량이 74%인 상위 12개의 주성분을 사용하였으며, 편한 결과이다. 입력영상에는 사람이 포함되어 있으나 입력영상에는 배경만 존재한다.

그림 8의 가장 오른쪽 영상은 입력영상과 입력영상의 차원성을 이전화한 결과이다. 얼굴과 색상선이 배경과 깨끗하게 구분된다.

2차 얼굴후보 영역 검출은 다음과 같이 이루어진다. 배경영상은 입력영상에 대해 1차 얼굴영상 검출에서 얻어진 얼굴의 높이에 해당하는 영역에 한정하여 1차 얼굴영역 검출 방법과 동일한 방법으로 얼굴후보 영역을 다시 검출한다. 그림 9의 (b)에서 머리의 상위 절반 가리면 포함된 영역에 한정하여 수치 및 수직 투영이 수행된다. 그림 9의 (c)는 (b)의 일부 영역에 대해 수평/수직 투영하고 얼굴의 위치를 재 추정하여 얻어낸 결과이다.

원형 방식의 한계로 인해 얼굴을 정확하게 찾기는 못한다. 그러나, 얼굴후보 영역의 중심과 얼굴의 중심이 비교적 빠르게 이동하는 것을 볼 수 있다. 이것은 얼굴 중심 위치에 ASM 모델의 초기위치를 설정하기에는 충분하다는 것을 보여준다.

3.5 ASM을 이용한 얼굴분류 추출

마스크나 선글라스 착용을 고려하여 얼굴의 음직 위주로 21개의 점만으로 ASM을 모델링 한다. 이로 인해, ASM의 정합성이 저하될 수 있다. 그림 10은 모델을 구성하는 좌표의 위치를 보여준다. 모델링을 위한 좌표선용은 수직으로 이용이 이루어지며, 이를 위해 그림 11과 같은 프로그램을 작성하였다. 그림 11은 19번 시도하기 입력한 화면을 보여준다.

모델의 초기위치에 특허 반영된 ASM의 정합 성능을 높이기 위해, 얼굴후보 영역을 중심으로 5개의 초기위치를 주어 5번의 독립적인 정합을 수행한다.
차영상은 양을 수 없기 때문에 제외하였다. 그림 10의 모델 좌표를 참조하여, 모델의 좌측 및 우측 좌표에 대한 집합을 각각 \(s_1 = \{(x_0, y_0), \ldots, (x_4, y_4)\} \) 및 \(s_2 = \{(x_8, y_8), \ldots, (x_{12}, y_{12})\} \)이라고 하자. 제안하는 거리는 다음과 같다.

\[
d_1(s_1, g_b, g_y) + d_2(s_2, g_b, g_y)
\]

\[
d_i(s_i, g_b, g_y) = \sum_{(x, y) \in s_i} \frac{1 - I(g_b(x, y), g_y(x, y), \theta)}{5}
\]

\[
I(a, b, \theta) = \begin{cases}
1, & \text{if } (a+b) \times \theta \\
0, & \text{otherwise}
\end{cases}
\]

여기서, \(r \)는 임계치 \(\theta \)에 따라 0 또는 1을 출력하는 이진함수이다. 그리고, 모델이 얼굴의 어느 한쪽 측면에만 잘 정합된 경우를 배제하기 위해 \(d_1 \) 과 \(d_2 \) 사이의 거리가 충분히 작은 경우 정합 정확도가 양수가 되도록 다음과 같이 정의한다.

\[
\begin{cases}
2 - (d_1 + d_2), & \text{if } |d_1 - d_2| < r, \\
0, & \text{otherwise}
\end{cases}
\]

4. 선글라스 및 마스크 착용판별

4.1 얼굴운동과 기반 눈 및 입 영역 추출

눈 및 입 영역은 ASM 정합결과로부터 쉽게 추출할 수 있다. 먼저 양쪽 눈을 기준으로 영상을 정면으로 회전시킨다. 즉, 0번 12번 좌표를 잇는 직선을 구하고 수평선과의 각도를 계산하여 그림 12의 오른쪽처럼 얼굴을 수직이 되도록 회전시킨다. 그리고, 그림 13에서와 같이 좌표 0, 12를 이용해 눈 영역을, 좌표 2, 4, 8, 10을 이용해 입 영역을 추출한다.
4.2 허스토그램 인덱싱을 이용한 선글라스 및 마스크 착용 판별

ASM 정합을 통한 눈, 입 영역 추출 정확도는 ASM 정합 정확도에 의존적이다. 2개의 유사중심으로 모델링 한 ASM 정합 정확도는 비교적 낮기 때문에, 눈, 입 영역이 정확하게 추출되지 않을 수 있다. 따라서, 크기, 위치, 화면에 무관한 특성을 사용하여 선글라스와 마스크 착용 판별을 수행해야 한다. 이를 위해 허스토그램인덱싱 기법[16]을 도입하였다. 허스토그램인덱싱은 두 영상의 유사도를 격차적으로 비교하는 방법으로 각 영상의 허스토그램을 생성한 후 두 허스토그램이 얼마나 유사한지를 검사한다. 이 방법은 영상검색에서 널리 사용되고 있다. 일반적으로 모든 화소값에 대해 허스토그램을 구하는 것이 아니라 화소값의 범위에 따라 몇 개의 구간을 설정하여 허스토그램을 생성한다. 여기서, 각 구간을 빈이라고 한다. 빈의 개수가 너무 많으면 허스토그램이 주어진 영상에 특화되고, 빈의 개수가 너무 적으면 주어진 영상의 체계가 나타내지 못하므로 이는 실험적으로 결정한다. 본 시스템에서는 구간을 둘로 개로 설정하였다. 그림 14은 눈과 입 영역에 대해 선글라스 및 마스크 착용 경우의 허스토그램을 비교하였다. 각각의 허스토그램이 비교적 명확히 구분되는 것을 볼 수 있다. 두 허스토그램의 유사도 판정은 다음과 같이 한다.

\[
\sum_{i=1}^{N} \min(H_a(i), H_b(i))/N
\]

여기서, \(H(i)\)는 \(i\)번째 빈의 허스토그램 값이고, \(\min(\cdot)\)은 작은 값을 출력하는 함수, 그리고 \(N\)은 빈의 개수를 나타낸다.

이제 조명에 따라 허스토그램이 달라지는데 이를 해결하기 위해 허스토그램 평활화와 같은 전처리 기법을 사용할 수는 없다. 왜냐하면, 추출된 눈 및 입 영역이 각각 유사한 화소값으로 구성되어 있어 허스토그램 평활화를 수행하면 오히려 잡음을 강조하는 결과를 낳기 때문이다. 이를 해결하기 위해 가장 큰 값을 가지는 빈을 기준으로, 입력영상의 허스토그램을 비교하고자 하는 창조 허스토그램 방향으로 이동시켜 비교하는 방법을 적용하였다. 그림 15에 이를 도식화하였다. 두근눈 영역에 대한 허스토그램을 평균 눈과 선글라스의 허스토그램을 고려하여 변환한 후 비교한 결과를 보면 이 허스토그램이 평균 선글라스 허스토그램보다 평균 눈 허스토그램과 더욱 유사해 지는 것을 확인할 수 있다.

5. 실험

5.1 얼굴문서추출

얼굴문서추출을 위한 ASM 모델 학습은 연구실에서 획득한 10명으로부터 5가지 포즈에 대해 10장씩 수집하여 총 500장의 300×240 해상도의 영상에 대해 이루어졌다. 그림 16은 5가지 포즈(정면, 상, 하, 좌, 우)에 해당하는 일부 영상을 보여준다. 얼굴영역 검출은 100장의 연속프레임을 대상으로 실험한 결과 1차 얼굴검출에서 84프레임에 대해 정확하게 검출하였고, 배경모델을 사용하는 2차 검출방법에서는 100프레임 모두에서 정확하게 얼굴을 검출하였다. 5개의 ASM 모델 초기위치 설정 방법은 96프레임에서 성공하였다.

그림 14. 눈과 선글라스, 입과 마스크 영역에 대한 허스토그램 비교

그림 15. 두근눈에 대한 허스토그램을 이동시켜 평균 눈 (원쪽) 및 선글라스 (오른쪽)의 허스토그램과 비교한 결과

그림 16. 5가지 포즈에 대한 일부 영상
5.2 선글라스 및 마스크 쓰기 관련

선글라스 및 마스크 쓰기 관련을 위한 학습 테이터는 ASM을 위한 학습 테이터에 대해 모델을 생성 시키고, 이로부터 눈과 입, 선글라스와 마스크 영역 영상을 수집하였다. 데이터 베이스는 10명에 대하여 눈, 입, 선글라스, 마스크 영상을 각각 5장씩 선정하여 총 200장의 영상으로 구성하였다. 실험에서는 조명의 받기 차이가 있는 경우에도 관찰하는 허스토그램 인텍스가 적용 가능한지를 검사하였다. 그림 19은 각 영상의 일부를 보여준다.

실험은 데이터의 양이 적은 경우에 유용한 방식인 Leave-One-Out[18] 방식으로 49장을 학습하고 1장을 테스트하는 것을 50번 수행하였다. 표 1은 허스토그램에서의 개수에 따라 잘 맞게 판정한 경우의 수와 전체 예측율을 보여준다.

비교 개수가 8개일 때 선글라스 쓰기용을 제대로 판정하지 못한 경우 3건만 제외하면 예측력이 거의 가장 낮은 예측율을 보였다. 비교 개수가 4일 때는 눈과 입 모두 예측값이 발생하였는데, 이는 비교 개수가 적을 경우 선정 단계를 충분히 반영하지 못한다는 것을 의미한다. 비교 개수는 기존의 데이터 분석을 근거로 판단하여 애매하다는 것을 의미한다. 특히, 선글라스와 막을 오류를 유발하게 증가하였는데, 이러한 결과는 그림 19의 선글라스 영상으로부터 추출할 수 있다. 선글라스 특성상 및 반사, 빛, 색, 마스크 영역의 접촉 등으로 인해 선글라스 영상들의 변화 정도가 크기 때문에, 비교 개수를 늘려서 이런 개별적 특성이 반영되었기 때문으로 추정할 수 있다.

<table>
<thead>
<tr>
<th>표 1. 정산구 쓰기 관련 성능</th>
</tr>
</thead>
<tbody>
<tr>
<td>비교 개수</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>32</td>
</tr>
</tbody>
</table>
표 2. 제약조건을 적용한 경우의 정신구 활용 판별 성능

<table>
<thead>
<tr>
<th>번의 개수</th>
<th>눈</th>
<th>신굴라스</th>
<th>입</th>
<th>마스크</th>
<th>전체 에러율</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/50</td>
<td>1/50</td>
<td>2/50</td>
<td>0/50</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>1/50</td>
<td>4/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0.10</td>
</tr>
<tr>
<td>32</td>
<td>0/50</td>
<td>19/50</td>
<td>1/50</td>
<td>1/50</td>
<td>0.40</td>
</tr>
</tbody>
</table>

조명변화에 대처하기 위해 히스토그램 평활화를 적용하지 않고, 히스토그램 비교단계에서 가장 큰 값을 가지는 번을 기준으로, 입력영상의 히스토그램을 비교하고자 하는 참조 히스토그램 방향으로 이동시키는 방법을 적용하였다. 그러나, 번의 개수가 적은 경우 번의 이동이 조명변화에 의한 변화보다 더 큰 변화를 유발하는 경우가 있어, 두 히스토그램에서 최대값을 가지는 번의 차이가 1인 경우에는 이를 적용하지 않도록 제 제정하였다. 표 2는 이러한 제약을 적용한 경우의 성능을 보여준다.

실험 데이터 집합이 작아 신뢰도는 낮지만 번의 개수가 적은 4와 8의 경우, 전체 에러율 측면에서 각각 10%와 6%의 성능 향상을 보여주었다.

6. 요약 및 향후 연구

본 논문에서는 허먼 인출기 사용자의 신굴라스나 마스크 착용여부를 판별하기 위한 시스템을 설명하였다. 허먼 인출기 인용은 얼굴검출 연구의 대표적 인용사례이나 얼굴의 외양정보에 기반하는 기존의 고성능 얼굴검출 기법들을 적용할 수는 없다. 제안하는 시스템은 얼굴모양모델에 기반한 얼굴유출 검출에 주안점을 두었다. 모델의 초기위치에 빈번한 얼굴모양 모델의 명확성을 확보하기 위하여 2단계에 걸친 얼굴후보 검출과정을 제시하였으며, 다중 정합 후 이들의 정합 정도를 평가할 수 있는 측정치를 제시하였다. 안정적인 얼굴후보 검출을 위해 우점적 정보와 배경정보를 함께 활용하였다. 배경모델을 정신하기 위해 시스템을 대기상태와 동작상태로 구분하고 대기상태에서 배경모델을 위한 영상을 주기적으로 취득할 수 있도록 하였다. 마스크나 신굴라스 착용 판별은 얼굴모양모델의 정합 정확도가 떨어지는 경우에도 동작할 수 있도록 히스토그램이 텍스을 드입하였다. 이러한 시스템 설계를 통해 실험실에서 획득한 영상에 대해 신굴라스와 마스크 착용을 구분해낼 수 있었다. 그러나, 향후 실험실 환경이 아닌 실제 환경에서 획득한 데이터에 대한 실험을 통해 파악된 문제점을 토대로 성능 개선이 필요하며, 특히 손 등에 의해 가려진 얼굴에 대한 추가 연구가 필요하다.

참고 문헌

