Thermal Stability and Critical Ignition Temperature of RPF

RPF의 열적 안정성과 한계발화온도

  • Published : 2008.03.31

Abstract

It is important to understand thermal characteristic as a method to estimate the new materials, because spontaneous ignition characterized by causing combustion in the low temperature without ignition source. If can not find out the thermal characteristics of materials, it is frequent that causes of fires could not be found. The danger level of spontaneous ignition material should be estimated and by closely studying its thermal characteristic. However, RPF(Refuse Paper & Plastic Fuel) is a solid matter and getting increasesa year by year because it is an economy profit as alternative energy for limited fossil fuels. Some time RPF occur a fire in the cases of its production process and conservation. Therefore study for thermal stability and critical ignition temperature of RPF was so imperative that the experiment by means of Bombe Calorimeter, TG-DTA, MS80, SIT-II, and Wire Basket Test was implemented. As a result, RPF had a caloric value 26.4-28.3 MJ/kg, and its initial pyrolysis temperature was $192^{\circ}C$ at heating rate 2 K/min. With the result of analysis by MS 80 which is an instrument measuring microscopic calory, pure RPF not containing water has higher caloric value than RPF containing 20% water. Also, SIT-II which is an instrument of insulated auto-ignition was ignited by $118.5^{\circ}C$. This temperature is lower than that of Wire Basket Test. The critical ignition temperature was calculated by Frank-Kamenetskii equation can cause ignition at $80^{\circ}C$ when conserved in the height of 10 m by the standard of infinity slab.

재생연료 중에서 고체물질에 해당하는 RPF(Refuse Paper & Plastic Fuel)는 친환경적인 요소와 한정된 지하자원에 대한 대체에너지로서 세계적으로 그 사용량이 증가하는 추세에 있으며, 제조 또는 저장과정에서 종종 화재가 발생하기도 한다. 따라서 RPF에 대한 열적안정성과 임계발화온도에 대한 연구가 필요하며, 이러한 연구를 수행하기 위하여 봄베 열량계, TG-DTA, MS80, SIT-II, Wire Basket를 이용하여 실험을 하였다. 그 결과 RPF는 26.4-28.3 MJ/kg의 발열량을 지니고 있었으며, TG-DTA로 초기 열분해 온도를 측정한 결과 승온속도 2 K/min에서 $192^{\circ}C$로 나타났으며, 미소열량 측정 장치인 MS80으로 분석한 결과 수분이 함유되지 않은 순수한 RPF가 수분이 20%함유된 RPF보다 발열량이 더 큰 것으로 나타났다. 또한 단열자연발화 실험장치인 SIT-II가 Wire Basket Test 보다 낮은 온도인 $118.5^{\circ}C$까지 발화하였으며, Frank-Kamenetskii의 식으로부터 계산되어진 한계발화온도는 무한평판을 기준으로 약 10 m 높이로 저장되어 있을 때, $80^{\circ}C$에서도 발화가 가능한 것으로 나타났다.

Keywords

References

  1. J. Sheehan, V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri, "Life Cycle Inventory of Biodisel and Petroleum Diesel for Use in an Urban Bus", NREL Report, pp.3-4(1998)
  2. T. Okubo, Y. Kakuta, N. Tanaka, and T. Matsuto, "Prelinary Study on Spontaneous Combustion of Pyrolysid Residue and RPF", Proceedings of the 9th Korea- Japan Joint Inter, pp.195-197(2005)
  3. 산업자원부, "에너지정책 성과분석 및 향후전략", 청와대 국정 정책보고서(2006)
  4. M. Wakakura, T. Uchida, Y. Shimizu, and H. Koseki, "Hazard Evaluation of Fires and Explosions Occurred at Waste Treatment Area in Japan", 3rd NRIFD Symposium, pp.291-299(2004)
  5. 최재욱, 목연수, 최일곤, 전세호, 임우섭, 민철웅, "Gasoline과 연료첨가제의 자연발화에 관한 연구", 한국화재소방학회지, Vol.20, No.1, pp.1-5(2006)
  6. 林佑燮, "Hydroxypropyl Methyl Cellulose 粉塵의 爆發 特性에 관한 硏究", 博士學位論文(2005)
  7. Z. Fu, X. Li, and H. Koseki, "Heat Generation of Refuse Derived Fuel with Water", J. of Loss Prevention in the Process Industries, Vol.18, pp.27- 33(2005) https://doi.org/10.1016/j.jlp.2004.09.001
  8. The United Nations, "Recommendations on the Transport of Dangerous Goods", Manual of Tests and Criteria, 4th Version(2003)
  9. 武田久弘, "熱火の理論", 工業火藥協會, Vol.38, No.5, pp.15-20(1976)
  10. T. Kotoyori, "Critical Temperatures for the Thermal Explosion of Chemicals", Elsevier, Industrial Safety Series 7(2005)
  11. 최재욱, 목연수, 하동명, "Hydroxy Propyl Methyl Cellulose의 자연발화에 관한 연구", 한국화재소방학회지, Vol.15, No.4, pp.34-40(2001)
  12. D. K. Alexandra, "Coal Characterisation by Thermal Analysis", Thermochimica Acta, Vol. 110, pp.527- 533(1987) https://doi.org/10.1016/0040-6031(87)88266-7
  13. D. A. Frank-Kamenetskii, "Diffusion and Heat Transfer in Chemical Kinetises", 2nd, Trans by Appleton, Pleum Press, pp.5-36(1969)