DOI QR코드

DOI QR Code

Synthesis of Inorganic-Organic Composite Electrolyte Membranes for DMFCs

DMFC용 무기-유기 복합 전해질 막의 합성

  • Kim, Eun-Hyung (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology) ;
  • Yoon, Gug-Ho (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology) ;
  • Park, Sung-Bum (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology) ;
  • Oh, Myung-Hoon (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology) ;
  • Kim, Sung-Jin (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology) ;
  • Park, Yong-Il (School of Advanced Materials & Systems Engineering, Kumoh National Institute Technology)
  • 김은형 (금오공과대학교 신소재시스템공학부) ;
  • 윤국호 (금오공과대학교 신소재시스템공학부) ;
  • 박성범 (금오공과대학교 신소재시스템공학부) ;
  • 오명훈 (금오공과대학교 신소재시스템공학부) ;
  • 김성진 (금오공과대학교 신소재시스템공학부) ;
  • 박용일 (금오공과대학교 신소재시스템공학부)
  • Published : 2008.02.29

Abstract

The FAS(Fluoroalkylsilane)/Nafion inorganic-organic composite electrolyte membrane was successfully fabricated through sol-gel method. The FAS having hydrophobic functional group and silanol ligands is impregnated in $Nafion^{(R)}$ membrane to reduce methanol crossover. The prepared FAS/Nafion inorganic-organic composite electrolyte membrane consist of the hydrophobic FAS-derived silicate nano-particles and $Nafion^{(R)}$ matrix showed decrease of methanol crossover and reduction of humidity dependence without large sacrifice of proton conductivity. The microstructural analysis of the composite membranes was performed using FESEM and FTIR. And the effect of the incorporation of the hydrophobic FAS-derived silicate nano-particles into $Nafion^{(R)}$ membrane was investigated via solvent uptake, membrane expansion rate, humidity dependency of proton conductivity and contact angle measurement.

Keywords

References

  1. B. R. Rauhe, Jr., F. R. McLarnon, and E. J. Cairns, "Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate," J. Electrochem. Soc., 142 [4] 1073-84 (1995) https://doi.org/10.1149/1.2044547
  2. K. Strasser, "Mobile Fuel Cell Development at Siemens," J. Power Sources, 37 [1-2] 209-19 (1992) https://doi.org/10.1016/0378-7753(92)80079-Q
  3. C. Pu, W. Huang. K.L. Ley, and E.S. Smotkin, "A Methanol Impermeable Proton Conducting Composite Electrolyte System," J. Electrochem. Soc., 142 [7] L119-20 (1995) https://doi.org/10.1149/1.2044333
  4. G. T. Burstein, C. J. Barnett, A. R. Kucernak, and K. R. Williams, "Aspects of the Anodic Oxidation of Methanol," Catal. Today, 38 [4] 425-37 (1997) https://doi.org/10.1016/S0920-5861(97)00107-7
  5. R. Parsons and T. Vandernoot, "The Oxidation of Small Organic Molecules A Survey of Recent Fuel Cell Related Research," J. Electroanal. Chem., 257 [1-2] 9-45 (1988) https://doi.org/10.1016/0022-0728(88)87028-1
  6. M. K. Ravikumar and A. K. Shukla, "Effect of Methanol Crossover in a Liquid-Feed Polymer-Electrolyte Direct Methanol Fuel Cell," J. Electrochem. Soc., 143 [8] 2601-06 (1996) https://doi.org/10.1149/1.1837054
  7. A. Heinzel and V. M. Barragan, "A Review of the State-of-the-art of the Methanol Crossover in Direct Methanol Fuel Cells," J. Power Sources, 84 [1] 70-4 (1999) https://doi.org/10.1016/S0378-7753(99)00302-X
  8. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, "Performance Evaluation of a Nafion/silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell," J. Power Sources, 106 [1] 173-77 (2002) https://doi.org/10.1016/S0378-7753(01)01053-9
  9. T. Oota et al, Jpn. Kokai JP 06,293,782, 1993; CA 112: 136317d, (1995)
  10. M. C. Wintersgill and J. J. Fontanella, "Complex Impedance Measurements on Nafion," Electrochemica Acta, 43 [10-11] 1533-38 (1998) https://doi.org/10.1016/S0013-4686(97)10049-4
  11. O. J. Murphy, G. Duncan, and D. J. Manko, "High Power Density Proton-exchange Membrane Fuel Cells," J. of Power Sources, 47 [3] 353-68 (1994) https://doi.org/10.1016/0378-7753(94)87014-4
  12. J. Larminie and A. Discks, "Fuel Cell Systems Explained"; 2/e pp. 183-195,, Ed. by John Wiley & Sons, Ltd., England, 2003
  13. T. D. Gierke, G. E. Munn, and F. C. Wilson, "The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide- and Small-angle X-ray Studies," J. Polym. Sci., 19 [11] 1687-704 (1981) https://doi.org/10.1002/pol.1981.180191103
  14. M. Ludvigsson, J. Lindgren, and J. Tegenfeldt, "FTIR Study of Water in Cast Nafion Films," Electrochem. Acta, 45 [14] 2267-71 (2000) https://doi.org/10.1016/S0013-4686(99)00438-7
  15. C.-Y. Chen, J. I. Garnica-Uodriguez, M. C. Duke, R. F. Dallla Costa, A. L. Dicks, and J. C. Diniz da Costa, "Nafion/ polyaniline/silica Composite Membranes for Direct Methanol Fuel Cell Application," J. of Power Sources, 166 [2], 324-30 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.102
  16. M. Nandi, N. K. Mal, and A. Bhaumik, "Novel Polyetherinorganic Hybrid Mesoporous Silica Synthesized through in Situ Incorporation of Organic Functionality," J. of Non-crystalline Solids, 352 [50-51] 5408-12 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.08.020
  17. K. A. Mauritz, "Organic-inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-gel Polymerization Templates for Inorganic Alkoxides," Mater. Sci. Eng., 6 [2-3] 121 (1998) https://doi.org/10.1016/S0928-4931(98)00042-3
  18. B. S. Pivovar, Y. Wang, and E. L. Cussler, "Pervaporation Membranes in Direct Methanol Fuel Cells," J. Membr. Sci., 154 [2] 155-62 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6