DOI QR코드

DOI QR Code

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground

지반내 입자거동 및 흐름을 고려한 수압작용 모델링

  • 전제성 (한국수자원공사 수자원연구원) ;
  • 김기영 (한국수자원공사 수자원연구원)
  • Published : 2008.02.29

Abstract

It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

개별요소방법은 재료의 미시적 거동 및 불연속적 거동과 관련하여 지반공학 분야에서 그 활용이 증가하고 있으나, 기존 개별요소 방법들은 입자형태의 재료들간 상호작용을 위주로 연구되었으며, 이는 지반공학 분야에 개별요소 방법을 제한적으로 적용하는 주요 원인이 되었다. 최근 기존 개별요소 방법에 흙, 암반 및 투수성 매질에서의 물 흐름을 고려한 수리연동 기법의 적용연구(Kawaguchi et al., 2003; Shimizu, 2004)가 진행되고 있다. 본 연구에서는 기존 개별요소방법에 수리연동 기법을 적용하여 수압조건별 지반의 공동생성 및 확장에 대한 수치해석을 실시하였다. 직사각형 해석요소에 입자크기와 초기 간극률 조건에 대한 개별요소 및 경계면 생성 후, 서보 제어방법을 통한 경계면 응력조건을 구현하였다. 수리거동의 고려는 연속방정식과 Navier-Stokes 방정식을 이용하여 압력과 속도를 구한 후, 입자와 유수간의 상호작용을 풀어가는 방식(Tsuji, 1993)으로 수행하였다. 구속압 조건($0.1MP{\alpha},\;0.5MP{\alpha}$)에 대하여 해석모델 중앙지점에 7단계로 증가되는 수평방향 유속을 재하하고, 재하지점 인근의 개별요소 이동 및 지점별 유량, 유속, 압력, 경계면 응력변화 등을 분석하였으며, 해석조건에 따라 개별요소와 수리 영향의 상호거동을 통한 공동생성 및 확장, 한계압력 발생 등을 확인하였다.

Keywords

References

  1. 박의섭, 류창하 (2005) 'PFC2D를 이용한 절리암반의역학적 물성 평가연구', 한국암반공학회지, Vol.15, No.2, pp.119-128
  2. 신중호, 박 찬, 신희순, 정용복, 이희근 (2000), 'Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석', 한국암반공학회지, Vol.10, No.3, pp.320-328
  3. 전제성, 김기영, 신동훈 (2006), '개별요소법에 의한 락필재료의 대형삼축압축시험 모델링', 한국지반공학회논문집, 제22권, 10호, pp.111-120
  4. Achmus, M. and K. Abdel-Rahman. (2002), 'The influence of 'Up-Scaling' on the results of particle method calculations of non-cohesive soils', Numerical Modeling in Micromechanics via Particle Methods, A. A. Balkema, Lisse, pp.183-187
  5. Cho, N., Martin, C.D., Sego, D.C. and Christiansson, R. (2004), 'Modelling Dilation in Brittle Rocks' in Gulf Rocks 2004: Rock Mechanics across Borders & Disciplines (Proceedings of the 6th NARMS Conference, Houston, June 2004). D. P. Yale, S. M. Willson and A. S. Abou-Sayed, Eds. Paper no. ARMA/NARMS 04-483
  6. Cundall, P.A., A. Drescher and O.D.L. Strack (1982), 'Numerical experiments on granular assemblies; Measurements and observations', in Deformation and failure of granular materials, Rotterdam: A.A. Balkema, pp.355-370
  7. Cundall, P.A. (2001), 'A discontinuous future for numerical modelling in geomechanics?', Proceedings of the Institution of Civil Engineers, Geotechnical engineering, Vol.149, No.1, pp.41-48
  8. Cundall, P.A., and Strack, O.D.L. (1979), 'A Discrete Numerical Model for Granular Assemblies', Geotechnique, 29, pp.47-65 https://doi.org/10.1680/geot.1979.29.1.47
  9. Hainbüchner, E., Potthoff, S., Konietzky, H., and Kamp, L. (2002), 'Particle based modeling of shear box tests and stability problems for shallow foundations in sand', Numerical Modeling in Micromechanics via Particle Methods, A. A. Balkema, Lisse, pp.151-156
  10. Huang, H. (1999), 'Discrete element modeling of tool-rock interaction', Ph.D. thesis, University of Minnesota
  11. Itasca Consulting Group, Inc. (2004), PFC2D User's Guide & Fish in PFC2D, Minneapolis, Minnesota
  12. Kawaguchi, T., Tanata, T. and Tsuji, Y. (1992), 'Numerical simulation of fluidized bed using the discrete element method', JSME, Vol.58, No.551, pp.79-85 https://doi.org/10.1299/kikaib.58.79
  13. Kawaguchi, T. (2003), 'Discrete particle simulations of gas-fluidized bed', Ph.D. Thesis, Osaka University
  14. Li, L., and Holt, R.M. (2002), 'Development of discrete particle modeling towards numerical laboratory', Numerical Modeling in Micromechanics via Particle Methods, A. A. Balkema, Lisse, pp.19-27
  15. Owen, D.R.J., Feng, Y.T., and Cottrell, M.G. (2002), 'Numerical modeling of industrial application with multi-fractruring and particulate phenomena', Numerical Modeling in Micromechanics via Particle Methods, A. A. Balkema, Lisse, pp.3-12
  16. Shimizu, Y. (2004), 'Fluid coupling in PFC2D and PFC3D', in Numerical Modeling in Micromechanics via Particle Methods-2004: Proceeding of he 2nd international PFC symposium, Kyoto, Japan, Y. Shimizu, R.D. Hart and P.A. Cundall, Eds. A. A. Balkema, Lisse, pp.3-12
  17. Skinner, A.E. (1969), 'A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particle', Geotechnique, Vol.19, No. , pp.150-157 https://doi.org/10.1680/geot.1969.19.1.150
  18. Stafield, A.E, and P.A., Cundall (1988), 'Towards a methodology for rock mechanics modeling', Int. J. Rock Mech. Min. Sci. and Geomech. Abst., Vol.25, No.3, pp.99-106
  19. Thomas, P.A. and Bray, J.D. (1999), 'Capturing nonspherical shape of granular media with disk clusters', Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.3, pp.169-178 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(169)
  20. Ting, J.M. and Corkum, B.T. (1988), 'Strength behavior of granular materials using discrete numerical modelling', Numerical method in geomechanics, Innsbruck, pp.305-310
  21. Ting, J.M., Corkum, B.T., Kauffiman, C.R., and Greco, C. (1989), 'Discrete numerical model for soil mechanics', Journal of Geotechnical and Geoenvironmental Engineering, Vol.115, No.3, pp.379-398 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(379)
  22. Tsuji, Y., T. Kawaguchi and T. Tanata (1993), 'Discrete particle simulation of two-dimensional fluidized bed', Power Tech., Vol.77, pp.79-87 https://doi.org/10.1016/0032-5910(93)85010-7